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ABSTRACT

The increasing frequency of natural disasters due to climate change necessitates automated
systems for rapid building damage assessment from satellite imagery. This study develops and
evaluates a two-stage deep learning pipeline that combines object detection for building
localisation with classification models for damage severity predictions. Using the xBD dataset,
we systematically compare state-of-the-art CNN and transformer architectures. YOLOvVS8s
achieved superior building detection performance compared to Faster R-CNN and FCOS. CNN
architectures (ResNet-50, EfficientNet-B3) demonstrated better adaptability to progressive
fine-tuning than transformers (ViT-B/16, DeiT-B/16), with EfficientNet-B3 achieving the
highest test accuracy (87.8%). Cross-Entropy loss outperformed focal and ordinal loss across
all architectures. The integrated pipeline achieved an end-to-end F1-score of 0.503, processing
1.28 seconds per image while maintaining strong performance on extreme damage categories
(no damage: 0.887, destroyed: 0.723). However, intermediate damage categories showed poor
recall (minor: 0.214, major: 0.143), highlighting the challenge of sequential error propagation
in two-stage architectures. This research provides empirical evidence comparing modern
architectures for satellite-based disaster response and establishes reproducible baselines for

future work.

Keywords: Satellite Imagery, Object Detection, Damage Classification, Transfer Learning,
Two-Stage Pipeline
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1 Introduction and Objectives

The frequency and severity of natural disasters have risen dramatically in recent decades due
to anthropogenic climate change. This shift has resulted in a marked increase in the occurrence
and duration of extreme weather events worldwide (Proma et al., 2022; Morozov et al., 2023),
manifesting in more frequent floods, droughts, hurricanes, storms, wildfires, and landslides
(Morozov et al., 2023; Zhang et al., 2022). Historical data confirm this trend: for instance,
climate disasters are reported to have increased from 1,171 in 1960-1979 to 6,641 in 2000—
2019 (Chavez-Demoulin et al., 2021). The consequences of such disasters extend far beyond
immediate human casualties, with built infrastructure suffering extensive damage,
underscoring the need for rapid damage assessment for effective resource allocation and
recovery planning. Traditional ground surveys and sensor-based methods are inadequate at this
scale, creating a critical demand for automated, remote-sensing approaches based on satellite

imagery and computer vision.

Computer Vision has revolutionized satellite imagery analysis, transforming static overhead
images into rich sources of actionable information across diverse applications. Beyond building
damage assessments, computer vision techniques contribute to broader satellite imagery
analysis, including footprint extraction, urban planning insights and even infrastructure
network mapping (Hoque et al., 2025; Maniyar et al.,, 2025; Wang et al., 2024). Key
methodological approaches frequently employ deep learning architectures, notably
Convolutional Neural Networks (CNNs) have enabled automated feature extraction from high-
resolution satellite data, while advanced models like U-Net and transformer-based approaches
have achieved precise pixel-level analysis for land use classification, object detection, and
change detection (Dosovitskiy et al., 2021; Ronneberger et al., 2015). Recent advances in
attention mechanisms, multimodal fusion, and transfer learning have expanded the capabilities
of computer vision for satellite imagery analysis. Yet challenges remain in achieving robust
generalization across regions and sensors, and in meeting the computational demands of real-
time and large-scale processing. These limitations continue to drive innovation toward more

efficient and scalable Earth observation solutions.

This study addresses these challenges by developing and evaluating a two-stage pipeline for
automated building damage assessment from satellite imagery. The approach first applies
object detection to localize individual buildings, followed by classification models to estimate

damage severity. The study systematically evaluates state-of-the-art CNN and transformer



architectures for both tasks through transfer learning, with attention to performance across
disaster types and geographic contexts. Key aspects explored include the use of pre- and post-
disaster imagery for change detection, the optimization of models for computational efficiency
without sacrificing accuracy, and the design of evaluation metrics suited to the challenges of

satellite-based assessment.

1.1 Research Questions

1. How effectively can state-of-the-art object detection architectures localize buildings in
post-disaster satellite imagery?

2. How do modern CNN and transformer architectures compare for building damage
classification from satellite imagery

3. What training strategies and loss functions optimise performance for imbalanced satellite
imagery datasets for building damage assessment?

4. How effectively can optimised models be integrated into a two-stage damage assessment

pipeline?

1.2 Purpose

The purpose of this research is to develop, evaluate and analyse critically a two-stage pipeline
for automated building damage assessment from satellite imagery. By integrating object
detection for building localisation with classification models for damage severity estimation,
the study investigates and compare effectiveness of CNN and transformer architectures, as well
as the impact of training strategies and loss functions on performance under class imbalance.
Furthermore, the research examines how detection and classification perform within an

integrated pipeline, with particular attention to error propagation effects.

1.3 Beneficiaries

The primary beneficiaries of this study are researchers in the field of Al, computer vision,
remote sensing and disaster informatics. By providing systematic comparisons of CNN and
transformer architectures, detailed evaluation of training strategies under class imbalances and
an end-to-end assessment of sequential pipeline, the study establishes baselines and

methodological insights that can inform future work.



Indirectly, the findings could benefit practitioners and organisations involved in developing
operational disaster-response systems, the analysis of error propagation and computational

efficiency highlights trade-offs relevant to real-world deployment.

1.4 Scope

The scope of this research is limited to the development and evaluation of machine learning
approaches for building damage assessment from satellite imagery. Specifically, the study

includes:

e Object Detection: Evaluating state-of-the-art models for localising individual
buildings in post-disaster imagery

e Damage Classification: Comparing CNN and transformer architectures in assigning
damage severity categories

e Training Strategies: Investigating the effects of loss functions on classification
performance.

e Pipeline integration: Assessing the performance and limitations of a two-stage

detection-classification framework.
The report is structured as follows:

1. Introduction and Objectives: We have outlined the motivation for automated
building damage assessment from satellite imagery, defined the research purpose, and
presented the guiding research questions, scope, and intended beneficiaries

2. Context: Reviews existing literature on disaster response, satellite imagery analysis,
and computer vision methods, highlighting current approaches to building damage
assessment and their limitations.

3. Data: Describes the dataset used in this study in detail, including its composition,
annotation framework, disaster coverage, dataset splits, and inherent challenges.

4. Methodology: Outlines the proposed two-stage pipeline, beginning with building
localisation using object detection models (Faster R-CNN, FCOS, YOLOv8) and
followed by building-level damage classification (ResNet-50, EfficientNet-B3, ViT,
DeiT). It further details data preparation strategies for building crop extraction,
training procedures, and the loss function ablation study.

5. Results: Presents experimental findings, including baseline and fine-tuned

performance of object detection models, classification results across different
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architectures and loss functions and final test set evaluations. The section concludes
with an end-to-end pipeline assessment integrating detection and classification.

6. Discussion: Interprets the experimental findings with respect to the research
questions, including evaluation of object detection, CNN versus transformer
classification, and the impact of class imbalance and loss functions. The section
further analyses the integration of detection and classification within a two-stage
pipeline, situates results in the context of existing literature, and reflects on
methodological contributions, limitations, and directions for future research.

7. Conclusion: Summarises the overall findings of the study, highlighting the key
contributions of the proposed two-stage pipeline for building damage assessment.
The section reflects on the methodological and empirical insights gained and offers

brief recommendations for future research directions.

1.5 Use of Al Tools

Generative Al tools have been used in limited capacity to refine the text by reducing repetitions
and improve the flow the flow between paragraphs. The initial drafting and writing of the report
were completed without the use of Al. For coding, Al tools were used to assist with
debugging/syntax errors and to identify options to improve runtime performance. All research

design, analysis, literature reviews, interpretation of results and final writing are of my own.



2 Context

This chapter reviews existing literature on building damage assessment using satellite imagery,
summarising key approaches, highlighting methodological trends, and outlining the main
challenges reported in prior work. We also explore broader computer vision research to inform

the modelling choices of this study.

2.1 Conventional Ground-Based Approaches for Damage Assessment

Building damage assessment has traditionally relied on manual surveys and sensor-based
monitoring systems. Manual surveys involve trained personnel to physically inspect and record
damage levels, often in the first 48 hours after the disaster (Gupta et al., 2019). Sensor networks
including accelerometers, strain gauges, and vibration-based monitoring devices, have also

been employed to track structural integrity in real time (Avci et al., 2021).

While these methods provide valuable information, they face major limitations when applied
at larger-scales. Manual surveys are slow and labour-intensive , delaying critical decision-
making (Doshi et al., 2018; Xu et al., 2019). They also expose personnel to hazardous
environments, where debris and unstable structures can make on-site inspections dangerous or
unfeasible (Trekin et al., 2018). Furthermore, reliance on human judgment introduces
subjectivity and inconsistency, leading to variable and sometimes unreliable assessments
(Doshi et al., 2018). Sensor networks face challenges such as pre-installation and maintenance
costs and they can be damaged during disasters, restricting their usefulness (Avci et al., 2021;

Xu et al., 2019).

2.2 Satellite Imagery Analysis for Damage Assessment

To overcome the limitations of ground-based methods, satellite imagery analysis has become
increasingly recognised as a key component of modern building damage assessment. Doshi et
al. (2018) highlighted the key advantages of satellite imagery analysis. Satellites can image
vast regions affected by a disaster including remote and inaccessible areas. Modern satellite
constellations offer rapid revisit times, allowing for near-real-time acquisition of pre- and post-
disaster imagery. This enables swift change detection and damage assessment, crucial for
immediate response. They also emphasized the advent of computer vision and machine

learning algorithms for automating satellite imagery analysis. This ensures consistent,



objective assessments and allows for the processing of massive amounts of data efficiently, a

task impossible for manual methods.

A major step in operationalising satellite imagery for damage assessment was the release of the
xBD dataset (Gupta et al., 2019). This large-scale benchmark provides pre- and post-disaster
imagery with over 850,000 annotated building footprints across multiple disaster types and
regions, labelled with a four-level damage taxonomy, offering a standardised resource for

training and evaluation.

2.3 Computer Vision for Satellite Imagery Analysis
2.3.1 Convolutional Neural Networks (CNNs)

CNNs have demonstrated consistent success in satellite imagery analysis, in tasks such as land
cover classification, building extraction and change detection. Among these, ResNet has
become one of the most widely adopted backbones due to its skip-connection design, which
enables the training of very deep networks without degradation in performance (He et al.,
2015). For instance, Mommert et al. (2021) demonstrated the effectiveness of a modified
ResNet-50 architecture for satellite imagery analysis by classifying power plant types from
medium-resolution Sentinel-2 data. By adapting the first convolutional layer to handle ten input
channels and adjusting kernel sizes, their model preserved sensitivity to small-scale structures,
a key requirement for satellite applications. The network achieved a mean accuracy of 90%
across plant classes. This study highlights robustness of ResNet and its interpretability in real-
world satellite tasks, supporting its use as a strong baseline CNN for building damage

classification.

EfficientNet has emerged as a highly effective CNN architecture in satellite imagery analysis
due to its unique compound scaling strategy, which balances network depth, width, and input
resolution for optimal accuracy and efficiency (Tan and Le, 2020). By systematically scaling
these dimensions, EfficientNet achieves state-of-the-art performance with significantly fewer

parameters than traditional CNNS.

Le et al. (2022) systematically evaluated lightweight CNNs for remote sensing image
classification and found EfficientNet-B0O outperformed MobileNet and NASNetMobile with
92.0% accuracy using only 4.6M parameters. Their key contribution was a novel multi-head

attention mechanism that operates across three dimensional perspectives (spatial, channel-



height, and channel-width), capturing both spatial and channel dependencies. This attention
design, applied to intermediate feature maps, achieved an improvement to 93.8% accuracy. The
study underscores the accuracy and efficiency advantages of the EfficientNet architecture
family and flexibility in satellite imagery analysis. These findings motivate our choice of

EfficientNet-B3 as a stronger capacity—efticiency balance for building-damage classification.

2.3.2 Object Detection

Object Detectors are the algorithms of choice for building localisation in our two-stage
pipeline. ResNet-based detectors have demonstrated strong performance in remote sensing
contexts. For instance, Groener et al. (2019) provided compelling evidence for ResNet
backbones through their evaluation of state-of-the-art detection models on WorldView-3 and
xView datasets, showing that Faster R-CNN with ResNet-50 offered the best trade-off between
speed and accuracy for small object detection, achieving average precision scores of 0.685—
0.691 for targets as small as 14 pixels. This confirms the robustness of ResNet architectures for
extracting spatial features in satellite imagery and justifies the adoption of ResNet50-v2 as a

baseline backbone in our building localisation stage.

Other object detection architectures such as YOLO are also widely used as single-stage
frameworks. Ghazouali et al. (2024) showed the effectiveness of YOLOVS in the context of
aircraft detection from satellite images. The model demonstrated strong performance with
average precision of 90.7% on the GDIT dataset while retaining efficient inference speed. The
study highlighted the architectural strengths of YOLOVS, including its capacity to detect small
objects, robust handling of multi-scale targets and robustness in cluttered backgrounds. These
characteristics are directly relevant to building localisation, where structures vary widely in
size, appear in dense urban layouts, and are embedded in visually complex environments. The
demonstrated balance of accuracy and efficiency positions YOLOVS as a particularly well-
suited model for integration into disaster response pipelines, where rapid and scalable building

detection is essential.

2.3.3 Vision Transformers (ViTs)
Dosovitskiy et al. (2021) introduced Vision Transformers (ViT), which apply self-attention
mechanisms directly to image patches, enabling global receptive fields earlier in the network

compared to CNNs. While ViTs lack certain inductive biases like translation equivariance,



large-scale pretraining has shown they can outperform CNNs in many tasks. Their attention
mechanisms provide interpretability by highlighting semantically relevant regions, and their
strong transfer learning capabilities make them well-suited for domains with limited labelled
data, such as disaster imagery. These properties position ViTs as a promising architecture for
building damage assessment, where capturing global context and efficiently processing high-

resolution imagery are critical.

Le et al. (2025) provide further empirical support for ViTs in remote sensing by systematically
comparing CNN, ResNet, and Transformer-based models on the EuroSAT and PatternNet
datasets. Their results show that pre-trained ViT models, particularly MobileViTV2 and
EfficientViT-M2, substantially outperform CNN baselines while being more energy efficient.
EfficientViT-M2 required only 38.19 MB storage and consumed less power than larger
transformer variants. These findings demonstrate that ViTs not only surpass CNNs in
classification performance but also meet the efficiency and robustness requirements of
operational satellite systems, strengthening their case as a viable architecture for building

damage assessment.

2.4 Existing Approaches to Building Damage Assessment
2.4.1 Two-Stage Pipelines

Gupta et al. (2019) made a landmark contribution to building damage assessment with the
introduction of the xBD dataset, the largest publicly available benchmark for this task. The
dataset provides over 850,000 annotated building footprints paired with damage labels across
multiple disaster types, accompanied by the Joint Damage Scale. Their proposed baseline
methodology adopts a two-stage pipeline: first, a U-Net model is used for building localisation,
followed by a ResNet-based classification network that predicts damage severity from cropped
building regions. This separation of tasks reflects the annotation process of xBD itself, where
building footprints are delineated before damage labels are applied, and highlights the
operational advantages of modular pipelines. By allowing each stage to be independently
optimized, the framework facilitates accurate footprint extraction while enabling the
classification stage to leverage both generic ImageNet-pretrained features and disaster-specific
representations. XxBD establishes both a standardized dataset and a methodological foundation
that has shaped subsequent research. Its design closely aligns with a two-stage pipeline

structure, where building localisation and damage classification are addressed as distinct but



complementary tasks, positioning this approach as a natural and practical framework for

building damage assessment.

Alisjahbana et al. (2024) proposed DeepDamageNet, also a two-stage deep learning framework
that highlights the advantages of separating building localisation from damage classification.
In the first stage, they compared semantic segmentation (ResNet-50 FPN) with instance
segmentation (Mask R-CNN) for footprint extraction, concluding that semantic segmentation
was more reliable in dense urban scenes (mloU 0.85 vs. 0.70). The second stage employed a
twin-tower ResNet-50 architecture that processed pre- and post-disaster image patches to
classify damage levels. By incorporating contextual priors such as disaster-type labels,
classification accuracy improved from 0.80 to 0.86, demonstrating the value of auxiliary
features. Overall, DeepDamageNet achieved an F1 score of 0.66. The study underscores key
strengths of a two-stage design: modularity, the ability to optimize localisation and

classification separately, and enhanced robustness across multiple disaster types.

Shen et al. (2022) proposed BDANet, a two-stage convolutional framework designed to
overcome the limitations of single-stage change detection in building damage assessment. The
pipeline first segments buildings from pre-disaster imagery using a U-Net with a ResNet
backbone, then classifies damage levels with a dual-branch network that processes pre- and
post-disaster features, initialized with weights from Stage 1. To improve robustness, BDANet
integrates a multi-scale feature fusion module to handle varied building sizes and a cross-
directional attention mechanism to capture correlations between temporal features. Evaluated
on the xBD dataset, the model achieved state-of-the-art performance with an overall F1 score
of 0.806. These results show the effectiveness of a two-stage pipeline where separating
localisation and classification allows each sub-task to be optimized independently while still

benefiting from shared representations.

2.4.2 End-to-End and Alternative Frameworks

While two-stage pipelines have been widely adopted for building damage assessment, they
present several drawbacks. Gupta and Shah (2020) highlighted these limitations, noting issues
such as error propagation between stages, the lack of end-to-end trainability, and the need for
stage-wise optimisation. To address these challenges, they designed RescueNet, a unified
framework that performs both building segmentation and damage classification in a single

forward pass. Built on a dilated ResNet-50 backbone, RescueNet integrates separate
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segmentation and change-detection heads, underpinned by a novel localisation-aware loss. This
loss combines binary cross-entropy for building segmentation with selective categorical cross-
entropy applied only to building pixels, ensuring damage classification is tied to correctly
detected structures. By enabling end-to-end optimisation, RescueNet overcomes error
propagation and learns shared feature representations across both tasks. On the xBD dataset, it

delivered a dramatic improvement in harmonic mean F1 scores for damage classification.

Weber and Kané (2020) explored a multi-temporal damage assessment system that jointly
predicts building localisation and damage levels within a single segmentation framework. They
experimented with instance segmentation and semantic segmentation and found that the latter
was more effective. Their model processes pre- and post-disaster imagery through shared
ResNet-50 backbones, concatenates features, and applies a semantic segmentation head. This
design avoids the inefficiencies of instance segmentation for small buildings and allows pixel-
level classification across four damage categories. Like many other studies, they also used a
cross-entropy loss function but also suggested the use of ordinal loss, recognising that
misclassifications should be penalised according to their severity gap which we explore later

in this study.

Kaur et al. (2023) introduced DaHiTrA, a hierarchical transformer-based framework that
explicitly models temporal differences between pre- and post-disaster imagery. Unlike earlier
CNN-based pipelines such as Siamese U-Net and RescueNet, which fuse features only at late
stages, DaHiTrA employs transformer-based difference blocks to directly capture changes
across temporal domains. This design forces the network to focus directly on structural changes
rather than single-image representations, significantly improving the localisation of damage
patterns. It achieved state-of-the-art performance on the xBD dataset and successfully
transferred to the new Ida-BD dataset, highlighting its robustness. By combining global context
through transformers with hierarchical difference learning, DaHiTrA sets a new benchmark for
unified end-to-end models. For this project, DaHiTrA is particularly relevant as it illustrates
the growing shift toward integrated transformer-based pipelines versus the modularity and

efficiency of two-stage frameworks.
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3 Dataset: The xBD Benchmark

3.1 Dataset Overview

The xBD dataset represents a seminal contribution to the field of automated building damage
assessment using satellite imagery. The dataset was developed, with the collaboration of
multiple disaster response agencies, to advance change detection and building damage
assessment for humanitarian assistance and disaster recovery research. It addresses the critical
need for rapid and accurate damage evaluation after a disaster and overcome the limitations of
traditional and labour intensive methods (Gupta et al., 2019). By enabling the development of
computer vision algorithms that can automate this process, xBD can potentially help accelerate

response times and reduces risks to human assessors.

The dataset encompasses over 45,362 km? of polygon-labelled pre- and post-disaster imagery
across 22,068 satellite image scenes. With 850,736 annotated building footprints spanning
diverse disaster events, geographical regions, and environmental conditions, xBD provides

researchers with unprecedented coverage for developing robust damage assessment models.

3.2 Dataset Composition and Structure

3.2.1 Imagery Characteristics

The xBD dataset consists of high-resolution satellite imagery sourced primarily from the
Maxar/DigitalGlobe Open Data Program. The imagery features a ground sample distance
(GSD) typically below 0.8 meters, providing sufficient spatial resolution for detailed building-
level damage assessment. Each disaster event in the dataset includes paired pre-disaster and
post-disaster RGB satellite images. Figure 1 shows representative examples of such image

pairs.
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Joplin Tornado Palu Tsunami Hurricane Michael Mexico Earthquake

Figure 1: Pre-Disaster and Post-Disaster Images

3.2.2 Data Organisation and Metadata

Each image in the xBD dataset is accompanied by comprehensive metadata that is essential for
contextual understanding and model development. The metadata includes precise geographic
coordinates for spatial analysis, specific disaster type classifications facilitating disaster-
specific model development, and detailed timestamps for both pre- and post-disaster imagery

acquisition.

The dataset follows a structured organization with disaster-specific directories containing

separate folders for images and corresponding JSON label files.

The annotation format provides building polygons in geospatial coordinate systems, enabling
integration with geographic information systems (GIS) and supporting spatial analysis
workflows. Each building annotation includes both geometric information (pixel and
geographical coordinates) and semantic information (damage classification), providing a

complete framework for supervised learning approaches.
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3.2.3 Building Damage Annotation Framework

The xBD dataset provides building-level annotations comprising 850,736 instances across all
disaster events. Each building is represented by a precise polygon delineating its footprint,
accompanied by an ordinal damage classification based on the Joint Damage Scale. This
standardized damage assessment framework categorizes building damage into four distinct

levels as shown in Table 1 below.

Table 1: Joint Damage Scale descriptions (Gupta et al., 2019)

Damage Level Description

0 (No Damage) Undisturbed. No sign of water, structural or shingle damage or
burn marks

1 (Minor Damage) Building partially burnt, water surrounding structure, volcanic
flow nearby, roof elements missing, or visible cracks.

2 (Major Damage) Partial wall or roof collapse, encroaching volcanic flow, or
surrounded by water/mud
Scorched, completely collapsed, partially/completely covered

_ with water/mud, or no longer present

The class distribution within the dataset reveals a significant imbalance characteristic of real-
world disaster scenarios: approximately 313,033 instances of "no damage," 36,860 instances
of "minor damage," 29,904 instances of "major damage," and 31,560 instances of "destroyed"

buildings.

3.2.4 Data Coverage
The xBD dataset encompasses 19 distinct natural disaster events spanning various geographical
regions worldwide. The diversity of disaster types included in the dataset ensures coverage of

different damage patterns and environmental conditions.

The dataset includes multiple hurricane events such as Hurricane Harvey (2017), Hurricane
Michael (2018), and Hurricane Florence (2018), providing extensive examples of wind-related
building damage patterns. These events capture roof damage, structural deformation, and

flood-related impacts.

Earthquake damage is represented through events including the Mexico City Earthquake
(2017) and other seismic events, reflecting the unique damage patterns associated with ground

shaking, including building collapse, foundation failure, and structural separation.
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Flood events and tsunami damage, including the devastating Palu Tsunami (2018) in Indonesia,

provide examples of water-related building damage.

The dataset includes volcanic eruptions and wildfire events such as the Santa Rosa Wildfires
(2017), offering coverage of fire-related damage patterns, ash deposition effects, and thermal

damage to building structures.

This geographical and meteorological diversity ensures that models trained on xBD can
potentially generalize across different disaster scenarios and environmental conditions, making

the dataset particularly valuable for developing robust damage assessment systems.

3.2.5 Data Splits
The xBD dataset employs a carefully designed splitting strategy to support rigorous model

development and evaluation. it is divided into three distinct subsets with specific purposes.

The training set comprises of 80% of the total data (18,336 images), this subset is used for
model training and parameter optimization. The training set maintains the same disaster type
diversity as the complete dataset, ensuring models are exposed to the full range of damage

patterns during training.

The holdout set consists of 10% of the total data (1,866 images) and serves as a final, unbiased

evaluation set for comprehensive performance assessment.

The remaining 10% of the dataset is the test set, and it serves to evaluate generalizability of the

models through inference on unseen data.

3.3 Dataset Challenges and Limitations
Despite its comprehensive nature, the xXBD dataset presents several inherent challenges that

researchers must address when developing damage assessment models.

Class imbalance: The significant over-representation of the "no damage" class relative to
damaged categories reflects real-world disaster scenarios but poses challenges for training
balanced classifiers. This imbalance necessitates careful consideration of sampling strategies,
loss function design, and evaluation metrics to ensure models can effectively detect damaged

buildings rather than defaulting to the majority class.
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Visual similarities: The distinction between adjacent damage levels, particularly between
"minor damage" and "major damage", can be visually subtle and requires sophisticated feature
extraction. This challenge is further compounded by varying viewing angles, lighting

conditions, and image quality across different satellite acquisitions.

Environmental obscuration: Post-disaster imagery frequently contains environmental factors
that complicate damage assessment, including cloud cover, smoke, debris accumulation, and
flooding. These conditions can obscure building structures and reduce annotation quality and

hence making damage classification challenging.

Incomplete Annotation Coverage: In some instances, buildings visible in post-disaster
imagery may lack corresponding annotations if they were not present or were heavily obscured
in pre-disaster imagery. In the test set provided, certain images contain incomplete or missing

annotations, which can affect the reliability of performance evaluation.

Despite these challenges, the xBD dataset provides an ideal foundation for building damage
classification tasks. Its comprehensive polygon annotations enable precise building-level
analysis, while its diverse disaster coverage supports robust model evaluation across a variety
of scenarios and damage types. Moreover, the standardised evaluation framework facilitates
meaningful comparison with existing approaches, supporting rigorous methodology validation

and performance assessment.
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4 Methodology

This chapter outlines the methodology adopted for developing and evaluating a two-stage
pipeline for automated building damage assessment from satellite imagery. It first presents the
overall design of the proposed approach, detailing the building localisation and damage
classification stages, before describing the training strategies and evaluation protocols.
Together, these components provide a structured framework for assessing model performance

and validating the effectiveness of the pipeline.

4.1 Pipeline Overview

Input Image Stage 1: Building Localisation Stage 2: Damage Classification Output: Damage
Assessment

Building
Crop
Extraction [

)

Figure 2: Proposed two-stage pipeline for post-disaster building damage assessment from satellite
imagery

This study proposes a two-stage pipeline for post-disaster building damage assessment from

satellite imagery. The pipeline consists of :

1. Inputting post-disaster satellite imagery

2. Stage 1 — Building Localisation: Detection and boundary extraction of buildings

3. Cropping and Context Padding: Each identified building is cropped from the original
high-resolution image, with a fixed padding ratio to retain relevant surroundings.

4. Stage 2 — Damage Classification: Assigning each detected building to a predefined
damage category.

5. Post-Processing and Visualisation: Classified results are mapped back to the original

scene and displayed as bounding boxes colour-coded by damage level.
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4.1.1 Rationale for a Two-Stage Design

Rather than training a single model to jointly detect buildings and assess their damage level,
we employ a decomposed approach. Prior work suggests that this can be advantageous in
numerous ways. For example, BDANet (Shen et al., 2022) highlights the benefits of task
specialisation whereby U-Net is used to first localise buildings from pre-disaster imagery,
suggesting that this avoids missing structures that may be heavily damaged in post-disaster
images. Similarly, DeepDamageNet (Alisjahbana et al., 2024) shows that using cropped
building images from Stage 1 significantly improves classification accuracy, as the damage

classifier focuses only on the relevant regions.

A two-stage approach can also be robust to data challenges such as class imbalance. In
DeepDamageNet (Alisjahbana et al., 2024) class imbalance is addressed more effectively by

training the classifier separately with balanced or augmented samples.

Another advantage is the ability to employ enhanced feature representation in the second stage.
For example, BDANet (Shen et al., 2022) incorporates a multi-scale U-Net with cross-
directional attention to better capture correlations between pre- and post-disaster imagery

which would be harder to achieve in a single-pass model.

However, some studies, such as RescueNet (Gupta and Shah, 2020), argue in favour of an end-
to-end workflow. They highlight that two-stage methods are often not jointly trainable,
potentially leading to sub-optimal overall performance, and that errors from the localisation

stage can propagate to the classification stage.

4.2 Stage 1: Building Localisation

The first stage of the pipeline focuses on detecting and localising buildings within post-disaster
satellite imagery. This stage is crucial as it provides the foundation for subsequent damage
assessment and requires robust identification of building structures that may exhibit varying
degrees of structural integrity. Object detection techniques are employed to generate bounding
boxes around individual buildings, which are then cropped and passed to the classification

stage.
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4.2.1 Data Preparation and Annotation Processing
The xBD dataset provides building footprint polygons in WKT format within JSON files. These

polygons are converted into axis-aligned bounding boxes using the Shapely geometry library,

with a 10-pixel padding applied to ensure full building coverage.

4.2.2 Model Architectures

4.2.2.1 Faster R-CNN ResNet-50 FPN V2
The primary architecture selected for building localisation is Faster R-CNN with ResNet-50

FPN V2 backbone, representing a state-of-the-art two-stage object detection framework. This
architecture combines the feature extraction capabilities of ResNet-50 with Feature Pyramid

Network (FPN) enhancements and the precision of region-based detection (Qi et al., 2023).

ResNet-50 backbone provides robust feature extraction through residual connections enabling
effective flow of gradient. The FPN component enhances detection performance across
multiple scales, which is particularly important for identifying buildings of varied sizes in
satellite imagery. The two-stage design of Faster R-CNN aligns well with the precision
requirements of building localisation. The Region Proposal Network (RPN) generates high-
quality object proposals, while the subsequent classification and refinement stage provides

accurate bounding box localisation.

4.2.2.2 FCOS (Fully Convolutional One-Stage)
FCOS is evaluated as a modern anchor-free object detection approach. By eliminating the need

for predefined anchor boxes, FCOS simplifies the detection process, which can be
advantageous for irregular shaped buildings or varied orientations. The architecture leverages
multi-level FPN for robust multi-scale representation and introduces a centredness branch to
improve localisation accuracy, especially for objects of different sizes and aspect ratios (Tian

et al., 2019).

4.2.2.3 YOLOVSs
YOLOVS is explored as a modern single-stage detector that adopts a fundamentally different

architectural philosophy compared to two-stage methods. Unlike Faster R-CNN, which
separates region proposal and classification, YOLOvVS8 performs detection in a single forward
pass through a unified architecture. It incorporates recent advances in object detection,

including an improved backbone design and optimised anchor-free detection heads. The
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YOLOvSs variant is selected to balance accuracy and efficiency between the lightweight nano

and the larger, more computationally expensive large versions.

This model is implemented using the Python library: Ultralytics. Additionally, images are
converted to the Portable Network Graphics (.png) format to be compatible with the model.

4.2.3 Training Procedure

To ensure a fair comparison, the three object detection models (Faster RCNN, FCOS and
YOLOVSs) have been trained under identical baseline settings. All baseline use resized input
images of 512x512, a batch size of 4, the Adam optimiser and early stopping with a patience
of 8 epochs. This setup enables consistent evaluation of their relative performance on the

building detection task.

A two-stage fine-tuning strategy is planned for the CNN-based architectures (Faster R-CNN
and FCOS), involving selective layer unfreezing followed by full networks fine-tuning at
discriminative and reduced learning rates. However, as will be shown in the Results chapter,
these models have underperformed compared to YOLOVS in baseline experiments and

therefore extended fine-tuning has not been pursued.

YOLOVS requires a different training approach due to its distinct architectural design and pre-
training methodology. Rather than the progressive unfreezing strategy, YOLOVS training relies
on extended epoch schedules to achieve convergence. The YOLOvS8s variant has been trained
initially for 30 epochs with standard hyperparameters including 512x512 input resolution,
batch size of 4, 0.002 learning rate, and early stopping patience of 8. The model is further
optimised by increasing training to 50 epochs, reducing early stopping patience to 5, and raising
the input resolution to 1024x1024 to capture finer details that may be lost when images are
down sampled to 512x512. The batch size remains fixed due to GPU memory constraints.
Under this configuration, the Ultralytics auto-configuration selects the AdamW optimiser with

a learning rate of 0.002, which also provides adaptive learning-rate scheduling.

Data Augmentation: For Faster R-CNN and FCOS, only basic preprocessing is applied,
consisting of resizing to 512x512 and normalisation. No additional augmentation is introduced
in order to maintain a fair and controlled baseline. In contrast, YOLOVS is trained using the
Ultralytics implementation, which applies built-in augmentation strategies by default (e.g.,

flipping, colour adjustments, and geometric transformations). These augmentations are
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retained to follow the recommended YOLOVS training configuration and to improve model

generalisation.

All experiments are conducted on an NVIDIA Tesla T4 GPU with 15 GB of memory, using
PyTorch 2.6.0 and CUDA 12 .4.

4.2.4 Evaluation Framework

The training process employs robust evaluation metrics tailored to object detection
performance. Mean Average Precision (mAP) serves as the primary metric, with mAP@0.5
used for model selection. This choice follows established practice in remote sensing object
detection, where mAP effectively captures detector performance across varying object scales

(Shermeyer and Etten, 2019).

Additional metrics including precision, recall and mAP@0.5:0.95 are also analysed for the
best-performing model to guide deployment in the final pipeline. Precision is defined as the
ratio of correct detections to total detections, recall as the ratio of detected buildings to total
ground-truth buildings, and mAP@0.5:0.95 as the mean average precision across loU

thresholds from 0.5 to 0.95.

4.3 Stage 2: Damage Classification

The second stage of the pipeline focuses on classifying the damage level of individual buildings
identified during the localisation stage. Using cropped building images extracted from post-
disaster satellite imagery, the goal is to predict one of four pre-defined damage categories: no
damage, minor damage, major damage or destroyed. This is a crucial step in post-disaster
response as it supports prioritization of resources and recovery planning. Visual indicators of
damage can vary widely; subtle damage cues may be overlooked by the human eye but can be

captured by deep learning models.

In this stage, state-of-the-art classification models such as ResNet, EfficientNet, ViT and DeiT
are evaluated. An ablation study is conducted to compare the effectiveness of different loss
functions on each model, and a multi-stage fine-tuning strategy is employed to optimise model
performance. The following sections describe data preparation, model architectures, training

procedures and experimental setup in detail.
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4.3.1 Building Crop Extraction for Classification

To train the damage classification models, building-level image crops are extracted from post-
disaster satellite imagery in the xBD dataset using the provided building footprint annotations.
Each crop corresponds to an individual building and is labelled with one of four predefined
damage categories. Several extraction strategies were explored to identify an approach that
balances visual clarity, computational efficiency, and memory usage. The adopted method is
presented in detail, followed by a brief discussion of alternative approaches and the reasons

they were not selected.

4.3.1.1 Adaptive Polygon-Based Extraction
The adopted building extraction method implements an adaptive polygon-based extraction

system that dynamically adjusts crop sizes based on individual building characteristics while
also employing a memory-efficient metadata-only processing strategy to address the memory
management challenges. This approach is designed to preserve spatial resolution, maintaining
building focus with enough contextual information and ensure scalability for large-scale

satellite imagery datasets.

The adaptive sizing algorithm calculates optimal crop dimensions for each building
individually, rather than applying a uniform sizing. The system computes building-specific
bounding boxes from polygon coordinates and applies proportional padding (30% of building
size) that scales with building size, ensuring adequate surrounding information while
maintaining building focus. This proportional approach means that a 50-pixel building would
receive approximately 15 pixels of padding, providing essential context without diluting the
building signal, while a 200-pixel building would receive 60 pixels of padding, maintaining

appropriate spatial relationships without introducing excessive background noise.

To address memory management challenges that emerged when processing a dataset with over
119,000 building instances, a metadata-only strategy is used. This approach differs from other
extraction methods explored by storing only lightweight metadata for each building instance
rather than the actual image crops. The metadata includes essential information such as image
paths, bounding box coordinates, damage labels, building characteristics, and spatial
relationships, requiring only a few megabytes of memory regardless of dataset size. Actual
crops are generated on-demand during training via the data loading pipeline, enabling efficient

handling of large datasets without exceeding system memory. This deferred processing
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approach enables the system to handle datasets that would otherwise exceed available system

memory.

Visual analysis of the extracted dataset (Figure 3) shows that this method produces higher
quality crops than the other approaches. Extracted crops exhibit excellent building focus while
maintaining sufficient contextual information for accurate damage assessment. The adaptive
sizing ensures that buildings consistently occupied appropriate portions of their crops. No-
damage samples have displayed clear structural definition with minimal background
interference. With minor-damage and major-damage categories, visual cues are still

challenging to identify as they can easily be classed as no-damage or destroyed respectively.

This method effectively balances resolution, focus, and efficiency, addressing the critical
requirements of the damage classification task. Its combination of adaptive sizing, proportional

padding, and metadata-only processing makes it a robust and scalable solution for building

damage assessment.

no-damage minor-damage major-damage destroyed

Figure 3: Visual examples from the adaptive polygon-based extraction method

4.3.1.2 Alternative Approaches Considered
Ground-Truth Polygon

The first approach used the ground truth polygon annotations in the xBD dataset to generate
building-level crops. Polygons stored in Well-Known Text (WKT) format were parsed with
the Shapely library, converted into axis-aligned bounding boxes with a 10-pixel padding, and
filtered to remove very small buildings (<32 pixels). This method leveraged precise building
boundaries and offered a conceptually straightforward way to extract pixel-accurate building

instances.

However, the extracted crops were typically very small (50-100 pixels), requiring significant
up sampling to meet the input requirements of modern CNNs (224%224 or 256%256). This

produced severe interpolation artifacts, loss of fine detail, and poor visual quality, especially
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for distinguishing subtle damage categories such as minor vs. major damage. Given these

limitations, the method was deemed unsuitable for robust classification and was abandoned.

no-damage minor-damage major-damage destroyed
UID: e6acc698... UID: 18540653... UID: 3527e5bd... UID: 4c480775...

Figure 4: Example building crops generated with the polygon-based extraction method, showing low

resolution and limited detail across damage categories

Fixed-Sized Centroid

To overcome the low-resolution limitations of the polygon-based method, a fixed-size centroid-
based approach was tested. For each building polygon, a 224x224 crop centred on the polygon
centroid was extracted, aligning with the input size requirements of most ImageNet-pretrained
architectures. This ensured consistent dimensions across samples, eliminating the severe up
sampling artifacts from previous approach and produced sharper and more detailed crops with

visible damage features.

However, the method introduced excessive background noise and reduced focus on target
buildings. Many crops contained multiple or partial structures as well as irrelevant context such
as roads and vegetation, while small buildings appeared tiny and larger ones often exceeded
crop boundaries. In addition, the fixed-size strategy produced a very large dataset, leading to
inefficient memory usage. These limitations reduced the method’s suitability for precise and

scalable damage classification, and it was not adopted for the final pipeline.

no-damage minor-damage major-damage destroyed
UID: 51c73332... UID: 4b5b8174... UID: 9272b00f... UID: 396b686a...

Figure 5: Example crops generated with fixed-size centroid, showing improved resolution but
excessive background noise
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4.3.2 Model Architectures

Several deep learning architectures are evaluated for the building damage classification task,
with the goal of comparing standard and lightweight variants from convolutional and
transformer-based architectures. All models are initialized with ImageNet-pretrained weights
and fine-tuned on the prepared building crop dataset. The following subsections briefly

summarise the key characteristics and motivations for selecting each architecture.

4.3.2.1 ResNet-50
ResNet, a widely used CNN architecture with residual connections, is selected as the baseline

for this study. It was first introduced in 2015 with the key innovation of skip connections that
allow gradients to flow directly through the network, addressing the vanishing gradient
problem (He et al., 2015). Structurally, ResNet-50 consists of an initial convolution and max-
pooling layer, followed by four sequential stages of residual blocks. Each residual block
includes a series of convolutions with batch normalisation and ReLU activation, combined with
an identity shortcut connection that preserves information from earlier layers. The architecture

concludes with global average pooling and a fully connected layer for classification.

The ResNet architecture has proven its effectiveness in remote sensing applications, including
satellite imagery classification tasks (Shabbir et al., 2021), with recent studies specifically
showing its effectiveness for post-disaster building damage assessments (Bhardwaj et al.,
2024). The residual connections make the architecture suitable for complex feature extraction
from satellite imagery. Therefore, ResNet-50 serves as a robust baseline for performance

comparison against more recent architectures.

4.3.2.2 EfficientNet-B3
EfficientNet-B3 has been selected to assess the impact of recent CNN innovations on building

damage classification. The key innovation of EfficientNet lies in compound scaling, which
simultaneously optimizes network depth, width, and resolution rather than scaling individual
dimensions independently (Tan and Le, 2020). This approach is implemented through a series
of MBConv (Mobile Inverted Bottleneck Convolution) layers that combine depth-wise
separable convolutions and shortcut connections to maximize computational efficiency. In
practice, this design allows EfficientNet to achieve strong accuracy with significantly fewer

parameters and lower computational cost compared to conventional CNNSs.
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Recent study by Saricayir and Ozcan (2024) has demonstrated exceptional performance from
EfficientNet on satellite imagery classification using the EuroSAT dataset while maintaining
computational efficiency. We opted for EfficientNet-B3 over the baseline B0 variant to provide
additional capacity for a more complex task of building damage assessment, following the
recommendation from Saricayir and Ozcan (2024); to explore variants that trade some

efficiency for higher capacity while maintaining the model computational advantage over other

CNNs.

4.3.2.3 ViT-B/16
Vision Transformer (ViT) is selected to evaluate the potential of transformer-based

architectures for building damage classification. Unlike CNNs, which use convolutional filters
to extract local features, ViT divides an input image into fixed-size patches (e.g., 16x16),
flattens them, and linearly embeds each patch into a token sequence. A learnable [CLS] token
is added to this sequence, and positional encodings are added to retain spatial information. The
sequence is then processed through a stack of transformer encoder blocks using multi-head
self-attention and feed-forward networks (Dosovitskiy et al., 2021). We have opted for ViT-
B/16 (Base variant with 16x16 patch size) due to its optimal balance between model capacity
and computational efficiency. This model would be the most appropriate for a transformer

baseline configuration.

Recent research has demonstrated that transformers can be superior in remote sensing
applications. The self-attention mechanism provides the ability to capture global spatial
dependencies and contextual relationships which can be crucial for understanding damage
patterns across different scales within satellite imagery. Although transformer-based
approaches are emerging in remote sensing research, most studies have focused on custom
architectures such as DaHiTra (Kaur et al., 2023) rather than leveraging the power of pretrained
models. We aim to investigate if ViTs can rival the performance of CNNs in building damage

classification.

4.3.2.4 DeiT-B/16
The Data-efficient Image Transformer (DeiT) is evaluated to test whether transformer-based

models optimised for data efficiency can perform well for building damage classification. DeiT
builds upon the Vision Transformer (ViT) architecture but introduces a knowledge distillation
framework, where a CNN teacher model guides a student transformer during training (Touvron
et al., 2021). This design reduces dependence on very large training datasets, making it well

suited for satellite imagery analysis where labelled data is often scarce.
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DeiT has demonstrated strong performance in remote sensing applications (Bashmal et al.,
2021), showing that transformers can generalise effectively in data-limited scenarios. Its
efficiency and competitive accuracy make it an ideal candidate to test whether data-efficient
transformers can achieve performance on par with CNNs in building damage classification
tasks.

4.3.3 Loss Function Ablation Study

4.3.3.1 Cross-Entropy Loss
Cross-Entropy loss serves as the baseline loss function for the multiclass classification tasks.

It is employed as the +primary comparison in this building damage assessment study from
satellite imagery. Cross-Entropy provides a principled probabilistic framework to train neural
networks since we have buildings assigned with one of four discrete damage levels. The loss
increases as predicted probability diverges away from the actual label. It is particularly suitable

for gradient based-optimisation methods.

The loss is defined as:

C
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Cross Entropy = —

where N represents the number of samples, C is the number of classes, y; is ground truth label
and p; is the predicted probability for class c. In practice, we implement this using PyTorch’s

built-in ‘CrossEntropyLoss’ function.

4.3.3.2 Focal Loss
Focal Loss was introduced by Lin et al. (2017) to address the class imbalance problem

encountered in dense object detection tasks. By applying a modulating term to cross entropy
loss, it enables learning to be focused on hard misclassified examples, automatically down-
weighting the contribution of easy examples during training. This is particularly useful in the

context of building damage assessment where certain damage categories are underrepresented.
The loss is defined as:

Focal Loss = —a:(1 — p¢)Ylog (pt)

where p; is the predicted probability for the true class, y(gamma) is the rate at which easy

examples are down-weighted, « is a class balancing weight factor to address class imbalance.
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Focal loss is expected to perform well in our study as it addresses two critical challenges.
Through the alpha parameter, we can mitigate class imbalance. The modulating factor, gamma,
can help lay more emphasis on samples that are more difficult to classify correctly. Focal Loss
also dynamically adjusts sample importance based on prediction confidence, allowing the
model to adaptively focus computational resources on challenging cases throughout training

(Lin et al., 2017).

4.3.3.3 Ordinal Loss
Building damage assessment involves ordinal relationships where damage categories follow a

severity progression from no damage to minor damage to major damage and finally to
destroyed. Traditional, multi-class classification treats these categories as independent classes.
This can lead to suboptimal performance. Misclassification errors should have varying
significance where confusing “minor damage” with “major damage” should incur less penalty
than “confusing “no damage” to “destroyed”. The implementation of Ordinal Loss was also
recommended by Weber and Kane in their 2020 article to penalize errors based on damage

scales.

We implement Ordinal Loss based on CORAL: Cumulative Ordinal Regression (Cao et al.,
2020). Instead of predicting class membership directly, the approach models the cumulative
probability of exceeding each threshold level. CORAL (COnsistent RAnk Logits) models the
cumulative probability that the true class exceeds a set of thresholds. Specifically, for K ordered
classes, the model outputs K—1 logits, each representing a binary classification task: whether
the true class is greater than a given threshold (Cao et al., 2020). The original formulation and

detailed loss equation can be found in Cao et al. (2020).

4.3.3.4 Class Weighted Loss Functions
The xBD dataset exhibits clear class imbalance, with “no damage” dominating the samples of

the dataset. To mitigate this, class weights were computed using the balanced weighting

strategy:

_ Total Number of Training Samples
Weight =

Number of Classes * Number of Samples in a Class
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Table 2: Distribution of building damage categories and weights (Training Set)

Damage Class Sample Count Percentage Weight
No Damage 88,961 74.6% 0.335
Minor Damage 11,040 9.3% 2.702
Major Damage 11,802 9.9% 2.527
Destroyed 7,507 6.3% 3.973

The weights inversely correlate with class frequency, ensuring that rare classes (major-damage,
minor-damage) receive proportionally higher attention during training. For Cross Entropy,
weights are applied directly through the weight parameter from PyTorch’s cross entropy
function. For Focal Loss, weights are implemented through the alpha parameter and for Ordinal
Loss, sample-specific weights were applied by multiplying the base loss with the corresponding

class weight.

All loss functions have been evaluated under identical training conditions to ensure fair
comparison. The experimental setup consisted of 10 training epochs using the Adam optimizer
with a learning rate of 0.001 and ‘ReduceLROnPlateau’ scheduler (factor=0.1, patience=2
epochs). Training employed a batch size of 32 with models evaluated on both training and

validation sets using accuracy, F1-score, and detailed classification reports.

4.3.4 Training Procedure

The training procedure for building damage classification has been implemented in a two-
phases: the initial loss function ablation followed by three-stage progressive fine-tuning using
the best-performing loss function from the ablation study. This approach ensures both a fair

evaluation of different loss functions and optimal adaptation of pretrained models to the task.

During the ablation phase, a conservative fine-tuning approach is employed to maintain
stability across all loss function variants. For all models, only the classifier head and the final
feature extraction block were unfrozen, while earlier layers remained fixed. The best-
performing loss function for each architecture is selected based on validation accuracy and
class-balanced performance metrics, prioritizing configurations that shows strong performance

across all damage categories rather than just overall accuracy.

Following the ablation study, the optimal model-loss combinations have undergone intensive
three-stage fine-tuning to maximize performance through progressive layer unfreezing and

adjustments in hyperparameters. This approach allows gradual adaptation of pretrained features
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while maintaining training stability. A consistent three-stage unfreezing pattern is adopted for

each model:

e Stage 1: Classification Head + Final Feature Extraction layers
e Stage 2: Extended to include 2-3 additional deeper layers/blocks

e Stage 3: Unfreezing covering approximately 50% of network parameters

For CNN architectures (ResNet-50 and EfficientNet-B3), stage-wise unfreezing of residual

blocks or feature stages from deepest layers backward with 15 epochs have been implemented.

For Vision Transformers (ViT-B/16 and DeiT-B/16), progressive transformer block unfreezing
with patch embedding adaptation in final stage with varying number of epochs (10-15) have

been implemented.

Alongside the above configurations, discriminative learning rates have been used; earlier layers
have received lower learning rate (0.0001-0.0002) to preserve pretrained features, while later
layers and classifiers used higher learning rates (0.0003-0.0005) for task adaptation. Similarly
stronger weight decay (0.0001) has been employed for later layers and reduced decay (0.00001
— 0.00005) for deeper layers. Early stopping with patience 3 is adopted to prevent overfitting

with learning rate scheduling.

This systematic approach is to ensure controlled adaptation of pre-trained representations to

building damage assessment while maintaining model stability and generalization capabilities.

Data Augmentation: To prepare the building image crops for classification, standard
preprocessing and light augmentation strategies are applied. On the training set, each image
was resized to 224x224 pixels using bicubic interpolation, followed by random horizontal
flipping, random rotations, and colour jitter. These augmentations increase robustness to
orientation, lighting, and appearance variability in satellite imagery. Images were then
converted to tensors and normalised using the standard ImageNet mean and standard deviation
values. To ensure consistency during evaluation, only resizing (224%224) and normalisation

are applied, without augmentation for the validation set.

4.3.5 Evaluation Framework
Model performance is assessed using standard classification metrics including accuracy,

precision, recall, and F1-score. Given the multi-class nature of building damage assessment,
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macro-averaged metrics are employed to assign equal weight to each damage class, ensuring

balanced evaluation across all severity levels regardless of class frequency in the dataset.

F1-Score as the Primary Metric

The Fl-score, defined as the harmonic mean of precision and recall, serves as our primary

evaluation metric:

2 * (Precision * Recall)
(Precision + Recall)

F1 — Score =

where:

True Positive (TP)
(True Positive (TP) + False Positive(FP))

Precision =

True Positive (TP)

Recall = — -
(True Positive (TP) + False Negative (FN))

F1-score is prioritised as it provides a balanced measure of both precision and recall, penalising
false positives and false negatives equally. This is crucial for accurate resource allocation and

efficient recovery planning after disasters.

Emphasis on Recall for Sever Damage Classes

While Fl1-score provides overall measure of balance, particular emphasis is placed on recall
performance for severe damage classes (major damage and destroyed). Recall measures the
ability of the model to correctly identify all instances of actual damage. High recall ensures
that all truly damaged structures are correctly identified, reducing the likelihood of false
negatives. This is critical in disaster response, where missed detections of severely damaged
buildings could result in misallocation of resources, delayed rescue efforts, or failure to issue

evacuation orders for unsafe structures.
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S Results

This section presents the experimental results for the two components of the proposed pipeline.
The first part evaluates building localisation using object detectors while the second part
focuses on damage classification of cropped building instances. Each stage is trained and
assessed independently, and the final section demonstrates how the two stages are integrated

into the full pipeline and the adjustments that have been made.

5.1 Stage 1: Building Localisation

This section reports the performance of the evaluated object detectors for building localisation.
Three different models have initially been compared under a common training setup to ensure
fairness, and the results are presented for both the baseline experiments and for extended fine-

tuning of the best-performing model.

5.1.1 Baseline Performance
The baseline comparison includes Faster R-CNN (ResNet-50 FPN V2), FCOS and YOLOVSs.

Their respective mAP scores at an IoU threshold of 0.5 are shown in Table 3 below. Among the

three models, YOLOvVSs has achieved the highest mAP.

Table 3 : Baseline performance of object detectors
mAP (IoU=0.5)
Faster R-CNN (ResNet FPN v2) | 0.3308

FCOS 0.2878
YOLOVS8s 0.5300

Faster R-CNN has 0.3308 mAP (IoU=0.5) at epoch 9. A steady increase in validation mAP is
observed for the first 10 epochs before plateauing and triggering early stopping at epoch 17.
The average number of predictions per image has decreased from 78 to 65 while the share of
high-confidence detections (>0.5) increases from 47.3% to 61.3% in the last epoch, indicating

improved calibration and less spurious boxes.

FCOS improves quickly from epoch 6 to 10, then plateaus, with peak performance observed
at epoch 16 with mAP of 0.2878. The FCOS detector consistently produced approximately 97
to 100 proposals per image with only 33% above 0.5 confidence, suggesting weaker precision

at higher IoUs.

YOLOVS8s substantially outperforms both Faster R-CNN and FCOS baselines. On the
validation split, it has achieved mAP@0.5 of 0.530 and mAP@0.5:0.95 of 0.279. The training
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shows stable optimization, with all loss components showing consistent monotonic reduction:
box loss decreased from 2.26 to 1.807, classification loss from 1.726 to 1.108, and distribution
focal loss from 1.26 to 1.099 over the 30-epoch training period. Validation performance
improved steadily throughout training, with mAP@0.5 rising from 0.371 in the first epoch to
0.530 at convergence, indicating effective learning without overfitting. The final precision-
recall balance of 0.695/0.478 demonstrates reliable detection performance on this dense dataset

containing approximately 58 building instances per image on average.

These results justify selecting YOLOvVS8s as the detector for further fine-tuning and for

generating building crops in the damage classification stage.

5.1.2 YOLOvSs Fine-Tuning

The fine-tuned YOLOvVS8s model achieved substantial improvements on the validation set of
1,866 images containing 108,784 building instances, with precision of 0.729, recall of 0.531,
mAP@0.5 of 0.585, and mAP@0.5:0.95 of 0.336. The extended 50-epoch training schedule
has continued to yield performance gains without triggering early stopping while loss
components have showed consistent optimization: box loss decreased from 1.934 to 1.587,

classification loss from 1.488 to 1.014, and distribution focal loss from 1.313 to 1.150.

Despite processing full-resolution imagery, the model maintained practical inference speeds of
10.8 ms with 5.2 ms post-processing. The balanced precision-recall performance indicates
effective building detection across diverse disaster scenarios while maintaining enhanced
sensitivity to smaller structures that benefit from full-resolution processing, positioning the

model optimally for the subsequent damage classification pipeline.

5.1.2.1 Baseline Model vs Fine-Tuned Model
The extended fine-tuning strategy has produced consistent improvements across all key

performance metrics. Table 4 presents a comprehensive comparison between the baseline and

fine-tuned configurations.

Table 4: Baseline and Fine-Tuned YOLOvS8s Performance Analysis

Configuration | Input Size | Epochs | Precision | Recall mAP@0.5 | mAP@0.5:0.95
Baseline 512x512 30 0.695 0.478 0.530 0.279
YOLOVv8s

Fine-Tuned 1024x1024 | 50 0.729 0.531 0.585 0.336
YOLOVS8s
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The fine-tuned model has achieved an 11.1% relative improvement in recall, indicating
significantly better capability in identifying building instances. This improvement is essential
for disaster response scenarios where missing damaged buildings can have severe
consequences. Precision also improved by 4.9%, reducing spurious detections. The
mAP@0.5:0.95 metric showed the most significant improvement (+20.4%), indicating
enhanced performance across different IoU thresholds. This suggests the fine-tuned model
produces more accurate bounding box localisations, particularly important for precise building

extraction in the classification stage.

Loss convergence further supports these improvements: the fine-tuned model achieved final
box, classification, and distribution focal losses of 1.587, 1.014, and 1.150, respectively,
outperforming the baseline losses of 1.807, 1.108, and 1.099. Processing higher-resolution
(1024x1024) imagery enabled the detection of finer structural details, particularly benefiting
small buildings (50-200 pixels), which make up a substantial portion of the dataset.

The fine-tuned model maintained practical inference speeds of 10.8ms per image despite
processing larger images. The computational overhead is reasonable considering the substantial
performance gains. GPU memory usage increases moderately, peaking at 14.1GB compared to

7.83 GB for the baseline.

Figure 7 presents a qualitative analysis, comparing building detection performance across
ground truth annotations (green), baseline YOLOvVS8s (blue), and fine-tuned YOLOvVSs (red).
The fine-tuned model demonstrates substantially improved detection coverage. In the top row,
the baseline model captures only prominent structures while missing numerous smaller
buildings. The fine-tuned model achieves comprehensive coverage, detecting most structures
present in ground truth annotations. In the second row, the baseline has numerous false
positives while the predictions of the fine-tuned model are more in line with the ground truths.
In the third row, the fine-tuned model is more precise in detecting buildings while the baseline

model has grouped nearby buildings in some instances.

The visual comparison (Figure 6) reveals improved multi-scale detection capability. The fine-
tuned model successfully identifies small residential structures, medium-scale commercial
buildings, and larger facilities across diverse urban morphologies. This improvement validates

the decision to increase input resolution.

However, several detections in the fine-tuned model lack corresponding ground truth

annotations, which may indicate either false positives or incomplete ground truth annotation
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which is a common limitation in large-scale satellite imagery datasets. A small number of
heavily damaged or shadowed buildings also remain undetected, indicating ongoing challenges

in complex visual conditions.

Ground Truth Baseline Fine Tuned

Figure 6: Qualitative Analysis of Baseline and Fine-Tuned YOLOv8s

5.1.3 Test Set Evaluation
The fine-tuned YOLOvS8s model is evaluated on the test set comprising of 1,866 images,
containing 109,724 ground truth buildings to assess generalization performance on unseen

disaster scenarios.
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Count

Table 5: Test Set Performance Metrics

Metric Value

Precision 0.7399
Recall 0.4969
F1-Score 0.5945
mAP@0.5 0.4294
mAP@0.5:0.95 | 0.2812

On the test set, the model has achieved a precision of 73.99% and recall of 49.69%, resulting
in an F1-score of 59.45%. The mAP@0.5 of 0.4294 indicates moderate detection performance
across varying IoU thresholds, while the lower mAP@0.5:0.95 of 0.2812 suggests reduced

accuracy at stricter localisation requirements.

The detection analysis revealed 73,693 total predictions from 109,724 ground truth buildings,

with 54,522 true positives, 19,171 false positives, and 55,202 false-negatives. These results

highlight the ability of the model to achieve strong precision while maintaining room for

improvement in recall, particularly for difficult-to-detect structures.
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Figure 7 illustrates the detection behaviour of YOLOvS8s on the test dataset. The Detection

Summary shows 21,738 high-confidence detections (=0.7),with 51,955 being in low-

confidence detections. This means that about 70% of predictions fall below the high-confidence

threshold. The model faces difficulties in consistently identifying buildings in post-disaster

imagery.

The Confidence Score Distribution exhibits a bimodal pattern with peaks around 0.3 and 0.8,

separated by the 0.7 threshold (red dashed line). This bimodal distribution indicates two distinct

detection regimes: challenging scenarios where the model exhibits low confidence (<0.3) and

clear scenarios where high confidence is achieved (>0.8). The substantial volume of low-
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confidence detections suggests many buildings in post-disaster imagery present ambiguous

visual characteristics that may challenge automated detection.

For pipeline integration, this distribution highlights a critical threshold selection trade-off. A
high threshold (>0.7) improves precision but excludes a majority of detections, while a lower
threshold (0.25-0.4) captures more buildings but risks increased false positives. The final
threshold will therefore be selected empirically to balance precision and recall for downstream

classification.

Ground Truth Ground Truth Ground Truth Ground Truth
15 buildings 9 buildings 0 buildings 10 buildings

Predictions

Predictions
15 buildings

Predictions Predictions

14 buildings

7 buildings

Figure 8: Qualitative Analysis of YOLOv8s on Test Set

0 buildings

Visual analysis of representative test cases reveals scenarios where the model succeeds and
encounters difficulties. The model shows good performance in dense urban areas with clear
building boundaries and moderate damage levels as seen in Figure 8 (first column) where 14
out of 15 buildings have been identified. It also detects successfully well-defined structural

elements with regular geometric shapes and sufficient contrast against the background.

By contrast, the model struggles in more challenging scenarios. In Figure 8 (second column)
isolated buildings in agricultural or mountainous terrain are often missed due to limited
contextual cues and poor background contrast. The model also struggles with complex urban
layouts with dense informal settlements, presenting challenges due to overlapping structures
and unclear boundaries. In Figure 8 (fourth column), over detection is caused by
misclassification of infrastructure elements as buildings, with 15 out of 10 buildings being

detected.
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5.2 Stage 2: Damage Classification

This section presents the experimental results for building damage classification using cropped
building instances extracted from post-disaster satellite imagery. The evaluation follows the
two-phase training approach described in Section 4.3: first, an ablation study of loss functions
across all architectures followed by three-stage progressive fine-tuning of the best performing

model-loss combinations.

5.2.1 Loss Function Ablation Study

The ablation study evaluates Cross Entropy, Focal Loss and Ordinal Loss across four
architectures: ResNet-50, EfficientNet-B3, ViT-B/16, and DeiT-B/16. All models have been
trained under identical conditions with conservative fine-tuning (classifier head + final feature

extraction layer unfrozen) for 10 epochs to ensure stable comparison.

F1-score serves as the primary evaluation metric, with particular emphasis on recall for
severe damage classes (major damage and destroyed), where false negatives have the greatest

impact on disaster response.

Table 6: Performance Results from Loss Function Ablation study

Cross Entropy Focal Loss Ordinal Loss
Accuracy | F1 Score | Accuracy | F1 Score | Accuracy | F1 Score
ResNet-50 0.83 0.73 0.71 0.65 0.80 0.72
EfficientNet-B3 | 0.80 0.70 0.65 0.61 0.78 0.71
ViT-B/16 0.81 0.72 0.66 0.61 0.79 0.71
DeiT-B/16 0.79 0.67 0.59 0.54 0.74 0.67

Cross Entropy consistently achieved the highest performance across all architectures. From
Table 6, ResNet-50 with Cross-Entropy has achieved the best overall performance with 83%
accuracy and 0.73 F1-score, while maintaining 79% recall for severe damage classes (macro-
average of major damage: 73% and destroyed: 86%). The weighted Cross-Entropy
implementation effectively mitigated class imbalance while maintaining balanced performance

across categories.

Focal Loss has significantly underperformed expectations in overall accuracy and F1-Score,
despite being specifically designed to address class imbalances. However, the value of recall

for severe damage classes are higher than Cross Entropy and Ordinal Loss across all models,
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Table 7 below illustrates the performance of recall for severe damage classes that reveals

important trade-offs in classification strategy.

Table 7: Recall of Severe Damage Classes (Major Damage and Destroyed)

Cross Entropy Focal Loss Ordinal Loss
Major Destroyed | Major Destroyed | Major Destroyed
Damage Damage Damage
ResNet-50 0.73 0.86 0.74 0.87 0.73 0.84
EfficientNet-B3 | 0.75 0.85 0.75 0.86 0.71 0.84
ViT-B/16 0.71 0.83 0.71 0.84 0.71 0.82
DeiT-B/16 0.70 0.85 0.73 0.87 0.68 0.81

The Focal Loss mechanism to down weight easy example (“No Damage” instances in our case)
has resulted in increases attention to minority classes, particularly severe damage categories.
This creates an inherent trade-off: while overall accuracy may decrease as the model becomes
more sensitive to potential damage indicators, it achieves significantly better detection of
damaged buildings, demonstrating how focal loss prioritizes minority class sensitivity over

balanced classification performance.

Ordinal Loss has demonstrated moderate performance across all architectures, with results
consistently falling between Cross-Entropy and Focal Loss. ResNet-50 with Ordinal Loss
achieved 80% accuracy and 0.72 F1-score, with severe damage recall of 78% (major damage:
73%, destroyed: 84%). While theoretically well-suited for the ordinal nature of damage
categories, the CORAL-based implementation shows only marginal improvements in ordinal
consistency compared to standard Cross-Entropy. Ordinal Loss shows similar performance to

Cross Entropy; not surpassing Focal Loss.

In summary, Cross-Entropy emerged as the most balanced option, maintaining strong overall
classification quality while achieving competitive recall on severe damage categories.
Although Focal Loss slightly improved severe-class recall (1-2%), this came at the cost of
substantial reductions in overall performance. Therefore, all four architectures proceeded to

extended three-stage fine-tuning using Cross-Entropy.
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5.2.2 Three-Stage Fine-Tuning

Following the ablation study, the best-performing model-loss combinations undergo three-

stage progressive fine-tuning (Section 4.3.4). This strategy is applied to ResNet-50,
EfficientNet-B3, ViT-B/16, and DeiT-B/16, all trained with Cross-Entropy Loss.

Table 8: Three-Stage Fine-Tuning Results

Stage 1 Stage 2 Stage 3
Accuracy | F1 Score Accuracy | F1 Score Accuracy | F1 Score
ResNet-50 0.82 0.74 0.82 0.74 0.85 0.75
EfficientNet-B3 | 0.78 0.70 0.84 0.74 0.85 0.75
ViT-B/16 0.87 0.77 0.79 0.72 0.81 0.71
DeiT-B/16 0.79 0.67 0.80 0.71 0.83 0.75

ResNet-50 has benefitted from the three-stage fine-tuning approach, achieving its optimal
performance in the final stage. Stage 1 (Layer 4 + Classifier) reaches 82.51% validation
accuracy after 6 epochs with early stopping, establishing a solid baseline with balanced
performance across damage categories. Stage 2 (Layer 3-4 + Classifier) shows marginal
improvement to 82.64% validation accuracy indicating that moderate layer unfreezing
provided limited additional benefit. However, Stage 2 (Layers 2-4 + Classifier) has yielded
substantial gains, achieving the highest validation accuracy of 85.33% after 13 epochs. The
model has maintained strong recall for severe damage classes (73% major damage, 85%
destroyed), confirming its robustness for disaster scenarios. Loss curves showed steady
convergence (from 0.1268 to 0.6675 validation loss), validating the progressive unfreezing

strategy for ResNet-50.

EfficientNet-B3 has shown a similar progressive improvement pattern as ResNet-50, with
consistent performance gains across all three stages, ultimately achieving the highest validation
accuracy among all the explored architectures. Stage 1 (last 2 MBConv blocks + Classifier)
establishes a foundation with 79.37% validation accuracy after triggering early stopping at 6
epochs. Stage 2 (features[6-7] + classifier) shows significant improvement, reaching 83.69%
validation accuracy after 15 full epochs without triggering early stopping, indicating the
architecture's capacity to benefit from extended training. Stage 3 (features[5-7] + classifier)
achieves the peak performance of 85.40% validation accuracy at epoch 12. The final model
demonstrates excellent balanced classification with macro-averaged precision, recall, and F1-
scores of 0.74, 0.77, and 0.75 respectively, while achieving strong severe damage class recall

(major damage: 71%, destroyed: 83%). The training pattern reveals the ability of EfficientNet-
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B3 to leverage progressive unfreezing effectively, with consistent training loss reduction and

stable validation performance.

ViT-B/16 has demonstrated a contrasting performance pattern compared to CNN architectures,
achieving its optimal performance in the initial stage before experiencing degradation in
subsequent stages. Stage 1 (last block + head) has achieved the highest validation accuracy of
86.97% after 8 epochs, establishing exceptionally strong baseline performance with macro-
averaged precision, recall, and Fl-scores of 0.78, 0.75, and 0.77 respectively, while
maintaining strong severe damage class recall (major damage: 71%, destroyed: 80%). Stage 2
(last 3 blocks + head) has shown significant performance degradation to 82.93% validation
accuracy after 3 epochs with early stopping. This indicates that unfreezing additional
transformer blocks disrupted optimal feature representations. Stage 3 (patch embedding + last
6 blocks + classifier) partially recovers performance to 84.23% validation accuracy at epoch 7,
though still falling 2.7 percentage points below Stage 1 performance. The performance
trajectory suggests that transformer architectures may benefit from more conservative fine-
tuning approaches, as ViT-B/16 achieved optimal performance with minimal parameter
adjustment, indicating the pretrained attention mechanisms were already well-suited for spatial

relationship analysis required in damage assessment.

DeiT-B/16 has shown moderate performance improvements through the three-stage fine-
tuning approach, though with less consistent gains compared to CNN architectures. Stage 1
(last block + head) has achieved 79.57% validation accuracy after 10 epochs with early
stopping. Stage 2 (last 3 blocks + head) has shown improvement to 80.43% validation accuracy
after 6 epochs with early stopping. Stage 3 (last 6 blocks + enhanced head) has achieved the
highest performance of 83.67% validation accuracy at epoch 4. The final model has
demonstrated good classification performance with macro-averaged precision, recall, and F1-
scores of 0.73, 0.79, and 0.75 respectively, while maintaining excellent severe damage class
recall (major damage: 73%, destroyed: 83%). However, the training exhibits signs of instability

with frequent early stopping and validation performance fluctuations.

5.2.3 Test Set Evaluation
Following three-stage fine-tuning, the best-performing variant of each architecture was
evaluated on the test set to assess generalizability and identify the optimal model for pipeline

integration. The test set contains 39,192 building instances across 1,866 images from
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previously unseen disaster scenarios, with a damage category distribution consistent with the

validation set.

Table 9: Test Set Performance Results

Model Accuracy | Precision | Recall | F1 Score | Major Damage | Destroyed
Recall Recall
ResNet-50 0.873 0.727 0.792 | 0.755 0.748 0.863
EfficientNet-B3 | 0.878 0.739 0.780 | 0.756 0.757 0.844
ViT-B/16 0.858 0.701 0.784 | 0.734 0.787 0.863
DeiT-B-16 0.852 0.687 0.792 | 0.730 0.755 0.879

ResNet-50 demonstrates robust generalisation performance, achieving 87.3% test accuracy
compared to 85.3% validation accuracy, indicating effective learning without overfitting. The
model maintains strong classification balance with macro-averaged precision, recall, and F1-
scores of 0.727, 0.792, and 0.755 respectively. It performs well on severe damage classes as
observed in Table 9 above, reliably identifying critical damage scenarios essential for disaster
response prioritization. The consistent performance across validation and test sets confirms

ResNet-50 as suitable for robust damage classification in diverse post-disaster scenarios.

EfficientNet-B3 achieves the highest test accuracy among all the architectures at 87.8%. The
model maintains superior classification balance with macro-averaged precision, recall, and F1-
scores of 0.739, 0.780, and 0.756 respectively, marginally outperforming ResNet-50 across all
metrics. For severe damage classes, the model achieves strong performance with 75.7% recall
for major damage and 84.4% recall for destroyed buildings, though slightly lower than ResNet-
50's destroyed class recall (86.3%). The consistent improvement from validation to test
performance, combined with the highest overall accuracy, establishes EfficientNet-B3 as the

leading architecture for reliable damage classification across diverse post-disaster scenarios.

ViT-B/16 achieves 85.8% test accuracy compared to 86.97% validation accuracy, indicating a
modest 1.2 percentage point decline but still robust performance without significant overfitting.
The model maintains reasonable classification balance with macro-averaged precision, recall,
and Fl-scores of 0.701, 0.784, and 0.734 respectively, though trailing behind both CNN
architectures. For severe damage classes, ViT-B/16 achieves competitive performance with
78.7% recall for major damage and 86.3% recall for destroyed buildings, matching the
performance of ResNet-50 on the destroyed category. Despite achieving the highest validation
accuracy (86.97%) in Stage 1 training, the degradation in performance of the transformer

architecture in subsequent fine-tuning stages and lower test performance compared to CNN
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counterparts suggests that vision transformers may require more specialized optimization

strategies for building damage classification tasks.

DeiT-B/16 demonstrates reasonable generalization performance, achieving 85.2% test
accuracy compared to 83.67% validation accuracy. The model maintains moderate
classification balance with macro-averaged precision, recall, and F1-scores of 0.687, 0.792,
and 0.730 respectively, ranking lowest among all architectures in precision and F1-score.
However, DeiT-B/16 excels in severe damage class detection, achieving the highest recall rates
with 75.5% for major damage and 87.9% for destroyed buildings, surpassing all other models
in identifying the most critical damage category. Despite the lowest overall performance
metrics and training instability evidenced by frequent early stopping, the superior sensitivity to
severe damage classes makes DeiT-B/16 valuable for disaster response scenarios where

maximizing detection of destroyed buildings is prioritized over overall classification accuracy.
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Figure 9: Test Set Confusion Matrices for Damage Classification Architectures
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Figure 9 presents the confusion matrices for all four architectures evaluated on the test set,
showing distinct classification patterns and error characteristics across damage categories. All
models achieve strong performance on the dominant "no-damage" class, with correct
classifications ranging from 26,758 (DeiT-B/16) to 28,061 (EfficientNet-B3). However,
notable differences emerge in minority class handling, particularly for "minor-damage" where
misclassification rates vary significantly across architectures. EfficientNet-B3 shows the most
balanced performance, with slightly lower false positives, while DeiT-B/16 exhibits higher
confusion between adjacent damage categories, evidenced by increased misclassifications
between "no-damage" and "minor-damage" (2,213 instances) and between "minor-damage"

and "major-damage" (340 instances).

The confusion matrices reveal critical insights into severe damage class performance, where
accurate identification is essential for disaster respons. ResNet-50 and EfficientNet-B3
demonstrate superior precision in distinguishing between damage categories, with ResNet-50
achieving 2,029 correct "destroyed" classifications out of 2,351 total instances. ViT-B/16 and
DeiT-B/16 show higher inter-class confusion, particularly DeiT-B/16's tendency to misclassify
"destroyed" buildings as "no-damage" (61 instances) and "major-damage" as "minor-damage"
(340 instances). Despite these classification errors, DeiT-B/16 achieves the highest true
positive rate for destroyed buildings, confirming its superior recall performance for the most

critical damage category.

Overall, EfficientNet-B3 achieves the most balanced results, combining the highest accuracy

(87.8%), strong macro precision (73.9%), and F1-score (0.756).

5.3 Building Damage Assessment Pipeline

This section evaluates the performance of the complete two-stage pipeline on the xBD test set.
Unlike the standalone experiments, this integrated evaluation reflects end-to-end capability,
measuring the effectiveness of the pipeline in detecting buildings, classifying damage levels,

and generating actionable outputs for disaster response.
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5.3.1 Pipeline Configuration

The integrated two-stage pipeline combines optimized detection and classification models in a
unified framework for real-world deployment. Configuration parameters are informed by prior

component-level evaluations.

o Stage 1 — Building Localisation: YOLOvVS8s operates with a low confidence threshold
(0.1) to maximize recall, since false negatives cannot be recovered downstream while
false positives can be filtered in Stage 2. This choice is supported by test set analysis,

which showed many valid detections in the 0.2-0.4 confidence range.

e Stage 2 — Damage Classification: EfficientNet-B3, adapted for the four-class
taxonomy, processes building crops generated through adaptive polygon-based
extraction with 30% proportional padding. For very small or oversized buildings,

padding is adjusted to preserve building focus.

o Integration: The pipeline runs on CUDA (with CPU fallback) and employs in-memory
operations with automatic coordinate scaling and error handling for diverse input
formats. Outputs are provided as color-coded bounding boxes with aggregated damage

statistics for disaster response applications.

5.3.2 Pipeline Performance on Test Data

The integrated pipeline is evaluated on the complete xBD test set of 933 post-disaster images,

providing end-to-end damage assessment performance metrics.

Table 10: Overall Pipeline Performance Metrics

Metric Value Description
Buildings Processed 22,213 Total buildings detected and classified
Percentage of ground truth buildings detected
Detection Rate 40.5% o
at localisation stage
Accuracy of damage classification on detected
Classification Accuracy 79.4% L
buildings
End-to-End F1 Score 0.503 Overall pipeline F1 performance
Processing Time 1.28s/image | Average processing time per image

The integrated pipeline demonstrates both notable strengths and significant limitations. It is

evaluated on 752 successfully processed images from the xBD test set (80.6% processing
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success rate from 933 total images). Overall, the pipeline has achieved a localisation F1-score
of 0.457 and a classification Fl-score of 0.523. The weighted end-to-end F1-score of the
pipeline is 0.503, where 30% is from building localisation and 70% from building damage
classification; this weighting follows the methodology described in BDANet (Shen et al., 2022)
and is implemented for better comparison with other studies. The two-stage approach shows

efficient computational performance of 1.28 second processing time per image.
Localisation/Detection Performance

The detection stage achieves 40.5% recall and 52.4% precision, identifying 22,213 true positive
buildings from 54,862 ground truth instances. This substantial coverage gap represents a
fundamental limitation, as the 32,649 false negatives cannot be recovered through downstream
processing. The detection precision of 52.4% indicates that nearly half of all detections (20,208
false positives) are non-building objects, creating additional computational burden for the

classification stage.

Classification Performance on Detected Buildings

Table 11: Damage Category Performance

Damage Level Precision Recall F1 Score Count
No Damage 0.835 0.946 0.887 17493
Minor Damage | 0.279 0.174 0.214 1949
Major Damage | 0.428 0.086 0.143 1923
Destroyed 0.682 0.770 0.723 848

The EfficientNet-B3 classifier achieved 79.4% accuracy on the 22,213 detected building crops.
Performance varied significantly across damage categories as observed in Table 11 above. The
pipeline achieves strong performance on extreme damage categories, with "no damage"
achieving 94.6% recall and F1-score of 0.887, while "destroyed" buildings achieve 77.0%
recall and F1-score of 0.723. This binary-like performance suggests the pipeline can reliably
distinguish between undamaged and severely damaged structures. However, for “minor
damage” and “major damage”, critical failures are observed. The pipeline misses over 82% of
“minor damage” cases and is, moreover, not usable for “major damage” category as a critically

low recall is observed.

The integrated system successfully detected and classified 40.5% of all buildings in the test set.

However, the 59.5% undetected buildings received no assessment, reflecting the central
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limitation of the two-stage design: classification performance is constrained by upstream

detection coverage.

Original Images
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Figure 10: Two-Stage Pipeline Performance Visualisation with Ground Truth Comparison
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Visual inspections of the pipeline outputs (Figure 10) across diverse scenarios highlights
systematic errors. Detection performance correlates strongly with building boundary clarity. In
urban areas (Santa Rosa Wildfire and Hurricane Florence) where distinct architectural features
can be identified, the model achieves better detection rates than in areas with complex natural

backgrounds (Guatemala Volcano and Hurricane Harvey).

False positive detections are evident across scenarios, with the pipeline misidentifying non-
building objects such as vehicles, road intersections, and debris accumulations as buildings.
Larger buildings have higher detection rates than smaller residential structures. Building
orientation and partial occlusion by vegetation or shadows create additional detection

challenges, particularly visible in the Hurricane Harvey forested areas.

Bounding box alignment remains a persistent issue: even for correctly detected buildings,

overlaps with ground truth are often partial, with boxes shifted or imprecisely fitted.

An analysis of the classification shows pronounced bias towards “no damage” predictions
(green). Categories such as “minor damage” and “major damage” rarely appear in outputs of
the pipeline while “destroyed” buildings are detected with higher reliability. This behaviour
effectively reduces the system to a binary classifier distinguishing between undamaged and
severely damaged structures, while failing to capture the intermediate categories that are

critical for nuanced disaster assessment.
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6 Discussion

This study has developed and evaluated a two-stage building damage pipeline combining
object detection and classification for automated post-disaster satellite imagery analysis. The
research addresses four key questions about modern computer vision architectures for building
damage assessment: performance of object detection on satellite images, the comparative
performance of CNN versus transformer architectures, the effects of class imbalance and loss
function selection, and the effectiveness of two-stage pipeline approaches. The research
contributes empirical evidence about the effectiveness and limitations of combining object

detection with classification for satellite-based building damage assessment.

6.1 Object Detection Performance

For building localisation, object detection has been used where the results demonstrate the
substantial advantages of modern anchor-free architectures, with YOLOvV8s achieving 60%
better performance than traditional two-stage approaches like Faster R-CNN while also

outperforming FCOS.

While many studies in building damage assessment literature employ semantic segmentation
approaches using UNet-based architectures to generate dense pixel-wise building masks, these
methods face distinct challenges including the inability to separate individual buildings within
connected structures and significantly higher computational requirements for full-resolution
processing (Li et al., 2021). Object detection was hence opted to distinguish building instances.
However, we have observed that the model struggles in areas where clear architectural features
are lacking, particularly in forested, agricultural or mountainous terrain where buildings lack
sufficient contrast from natural backgrounds. The model also struggled with small buildings,
which was an observation also made by Ghazouali et al. in their 2024 article. Conversely, the
model performs relatively well in dense urban areas where distinct building boundaries and
geometric patterns provide clear visual cues, though it occasionally misclassifies debris
accumulations, road intersections, and other infrastructure elements as buildings, leading to a

notable false positive burden.

6.2 Classification: CNN and Transformer Comparison

The architectural comparison reveals distinct performance patterns that address fundamental
questions about transformer effectiveness in satellite image classification. CNN architectures
have demonstrated superior adaptability to progressive fine-tuning strategies, with ResNet-50

and EfficientNet-B3 achieving consistent increase in performance across the different stages.
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In contrast, ViT-B/16 achieved its peak performance accuracy in the initial fine-tuning stage
but experienced significant degradation with extended training across all metrics. This
counterintuitive result suggests that transformer architectures may require fundamentally
different optimization strategies for satellite imagery tasks, with minimal parameter adjustment
being more effective than aggressive fine-tuning. When evaluated on test set, DeiT-B/16, while
less stable overall, achieved stronger recall for intermediate categories, outperforming CNNs
in minor-damage and major-damage detection. Taken together, these results suggest that CNNs
remain advantageous for stable, balanced feature extraction in satellite imagery, but that
transformers may hold targeted value where sensitivity to severe or subtle damage cues is

prioritised.

6.3 Classification: Class Imbalance and Loss Function Analysis

The loss function ablation study reveals critical trade-offs between overall classification
performance and recall for severe damage categories that have significant implications for
building damage assessment applications. Cross-Entropy achieved the best balance of accuracy
and recall across all architectures, with ResNet-50 maintaining strong performance even on
severe damage categories. However, Focal Loss demonstrated marginally superior recall for
critical damage categories (1-2% improvement in major damage and destroyed classes) at the
cost of substantial decreases in overall accuracy and F1-scores across all architectures. This
performance trade-off presents a fundamental challenge: while missing severely damaged
buildings could have life-threatening consequences, excessive false positives are not ideal

either.

The implementation of Ordinal Loss, following the approach proposed by Weber and Kané
(2020), produced performance between Cross-Entropy and Focal Loss. The weighted Cross-
Entropy implementation had successfully addressed basic class imbalance issues, but the
persistent poor performance on intermediate damage categories suggests that additional steps
should be considered such as oversampling of classes where the model struggles (“minor
damage” and “major damage”). Moreover, it can be inferred that the inherent difficulty lies in
distinguishing subtle damage indicators at satellite resolution, requiring architectural or data

collection innovations rather than training procedure modifications.

6.4 Two-Stage Pipeline Integration and Performance
Integrating YOLOvV8s detection with EfficientNet-B3 classification highlights the inherent

vulnerability of sequential architectures, where upstream errors irreversibly constrain
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downstream performance. Prior research has shown that multi-stage methods often suffer from
error propagation, resulting in suboptimal outcomes (Gupta and Shah, 2020). In this study, the
detection stage imposed two key constraints on classification: (1) missed buildings, which
cannot be assessed for damage, and (2) false positives, which waste computational resources
and introduce noise. The choice of a low confidence threshold (0.1) maximized recall but also
generated a large volume of ambiguous detections, with most predictions falling below 0.7
confidence. This reflects a broader issue of confidence miscalibration in modern detectors,
where probability scores are not reliable indicators of correctness and vary systematically with
object size and context (Kiippers et al., 2020). These uncertainties carried into the classification
stage, collapsing intermediate categories, with recall for minor and major damage dropping to
critically low levels. Consequently, the pipeline effectively operated as a binary classifier,
distinguishing primarily between undamaged and destroyed buildings. This outcome illustrates
a structural limitation of sequential designs: classification cannot recover information that is
either absent or corrupted during detection, especially when subtle damage cues depend on

precise localisation.

6.5 Comparison with Existing Literature

The methodological approach adopted in this study differs from predominant strategies
employed in building damage literature. The most common approach for building damage
assessment using satellite imagery is to pose the problem as a combination of segmentation
and classification tasks (Gupta et al., 2019; Kaur et al., 2023; Shen et al., 2022), with many
studies using semantic segmentation based on U-Net for building localisation to capture
irregular shaped entities as opposed to object detection frameworks. Despite achieving state-
of-the-art performances (Table 12), a drawback of semantic segmentation is its tendency to
treat multiple instances of the same class as a single contiguous entity (Alisjahbana et al., 2024)
which we attempted to solve through object detection. A further challenge was the wide
variation in building sizes, ranging from small residential units to large commercial complexes,
which made it difficult to learn scale-invariant features. This limitation is consistent with

observations reported in BDANet (Shen et al., 2022).

Table 12: Performance Comparison (F1-Score) with Existing Literature on the xBD Dataset

F1 (Overall) | No Damage | Minor Damage | Major Damage | Destroyed
xBD Baseline | 0.265 0.663 0.144 0.009 0.466
Our model 0.503 0.887 0.214 0.143 0.723
BDANet 0.806 0.925 0.616 0.788 0.876
DaHiTrA 0.819 0.978 0.711 0.765 0.772
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Table 12 compares the performance of our pipeline with existing literature on the xBD dataset.
Our pipeline achieved an overall F1-score of 0.503, substantially lower than BDANet (0.806)
and DaHiTrA (0.819). The strengths of our approach lie in its ability to discriminate extreme
categories, performing competitively on no damage (0.887) and destroyed (0.723). However,
it struggled with intermediate categories (minor = 0.214, major = 0.143), where BDANet
achieved 0.616 and 0.788, respectively. These results highlight the trade-off between modular
and end-to-end approaches: while object detection provides modularity and computational
efficiency, state-of-the-art end-to-end models like DaHiTrA demonstrate clear advantages in
avoiding sequential error propagation and maintaining higher overall accuracy across all

categories.

6.6 Methodological Contributions

This study provides several methodological contributions to the field of building damage
assessment from satellite imagery. Firstly, the comprehensive architectural comparison across
both CNNs and transformers, combined with loss function ablation, represents one of the few
empirical evaluations of transformer effectiveness for this task; prior studies have relied

exclusively of CNN models or custom transformer architectures.

Secondly, the study introduces an adaptive polygon-based extraction method with metadata-
only processing to address memory constraints while preserving building focus. This
innovation enabled efficient handling of large-scale datasets that would otherwise exceed
system capacity. Alongside this, the rigorous evaluation framework incorporated component-
level testing, progressive fine-tuning strategies, and end-to-end pipeline assessment. Finally,
the standardized experimental protocols and ablation studies establish reproducible baselines
for future research, while the detailed analysis of error propagation in sequential architectures

provides actionable insights for future research.

6.7 Limitations and Future Research Directions

We have identified several critical limitations that create opportunities to advance building

damage assessment pipelines.

For building detection, the 40.5% coverage rate underscores the difficulty of reliably localising
all structures, particularly small buildings and those in environments lacking clear architectural
features. Future work could investigate extended training schedules, multi-scale feature
enhancement, or instance segmentation approaches to capture finer boundaries, though these

would come with higher computational cost.
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For damage classification, performance on intermediate categories remains a fundamental
challenge. Accuracy proved misleading under class imbalance, reinforcing the importance of
prioritising F1-score as the primary optimisation metric and early stopping criterion. Further
work could explore advanced sampling strategies (e.g., SMOTE) to balance class

representation and strengthen performance on minority classes.

At the pipeline level, sequential architectures inherently suffer from error propagation, with
upstream detection failures constraining downstream stages. End-to-end frameworks that
directly predict damage levels for detected buildings may mitigate this limitation at the expense
of modularity and component-level flexibility. Architectures like YOLT may prove beneficial

as either an initial detection stage or an end-to-end pipeline.

Finally, confidence calibration represents an additional avenue for improvement. Detection
performance was hindered by ambiguous confidence scores and unreliable calibration,
complicating threshold selection. Evaluating calibration methods and incorporating higher-
resolution or multi-source imagery may improve both confidence reliability and the visibility

of small, low-contrast structures that dominate missed detections.
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7 Conclusion

This research developed and evaluated a two-stage automated building damage assessment
pipeline, integrating YOLOVSs detection with EfficientNet-B3 classification on the xBD
dataset. The study addressed critical gaps in comparing CNN and transformer architectures for
disaster response, while also proposing a scalable polygon-based extraction method for large-

scale satellite data.

The work makes three key contributions: (1) demonstrating the continued advantage of CNNss
in satellite imagery tasks while highlighting optimisation challenges for transformers, (2)
introducing an adaptive, metadata-driven extraction approach that enables efficient and
detailed dataset handling, and (3) establishing a reproducible evaluation framework that

clarifies the trade-offs between modular two-stage designs and end-to-end architectures.

Overall, the findings underscore both the potential and limitations of sequential pipelines.
While they offer computational efficiency and modularity, their vulnerability to error
propagation highlights the need for future research focused on improving building detection
coverage, enhancing classification of intermediate damage categories, and developing more

robust learning strategies for imbalanced and visually ambiguous satellite data.
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Appendix A
All the python notebooks for each stage (Localisation and Classification) are provided in the

Google Drive Folder below.

Google Drive Folder:
https://drive.google.com/drive/folders/litws DEUNdQqGB4SnW3CUmiPCv1vM-

da?usp=drive_link

The folder includes the following notebooks:

Annotations for Object Detection Model Training
Object Detection Models

Crops Extraction Methods explored

Damage Classification Models

Pipeline Evaluation on Test Data

A e

Pipeline for Single Image Processing

Alongside the python notebooks, the weights of the best models are provided, along with an

example of an image to run the pipeline.

The instructions to run the code are provided in a text file. The xBD dataset is needed to run
the code (model training and test set evaluation) successfully. The dataset can be downloaded

at: https://xview?2.org/

Another useful dataset for damage assessment for earthquake mainly: https://www.designsafe-

ci.org/data/browser/public/designsafe.storage.published/PRJ-4169

These resources are intended to ensure reproducibility and support future extensions of this

work.
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Appendix B

Project Proposal

Title: Advancing Building Damage Assessment from Satellite Imagery: Evaluating
Modern Computer Vision Approaches for Disaster Response

Supervisor: Dr Giacomo Tarroni
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INTRODUCTION

The aim of this project to evaluate the effectiveness of modern computer vision architectures beyond
CNNs in building damage assessment from satellite imagery, comparing their performance against
traditional approached to advance disaster response capabilities. Current disaster protocols typically
require dangerous in-person inspections within 24-48 hours of a disaster event. With the advent of
computer vision, we have seen the implementation of CNNs, which have been mostly successful and
essential for the increasing number of disasters globally, natural and man-made.

Building damage assessment has been approached as a pixel-level semantic segmentation task using
CNN-based backbones. While these methods have proven effective, they present several limitations in
operational deployment. Segmentation-based approaches require dense pixel-level predictions across
entire images, leading to high computational costs during both training and inference. Additionally,
CNNs process images through local receptive fields, potentially missing important spatial relationships
and global damage patterns that are crucial for accurate assessment. Recent advances in computer vision
have introduced new architectures that offer unique advantages through novel attention mechanisms
and ability to capture long-range spatial dependencies.

Research question, objectives and outcomes

Effective disaster response requires rapid and accurate building damage assessment to guide emergency
resources and recovery efforts. In post-disaster scenarios where computational resources may be limited
and speed is essential, any improvement in efficiency and accuracy can be crucial for successful
emergency operations. The emergence of new architectures offers potential advantages, but their
effectiveness compared to established methods remains unclear. This leads to the question of: How do
modern computer vision architectures beyond CNNs compare to traditional CNN architectures for
building damage classification from satellite imagery?

The objectives are to evaluate the performance of different modern architectures against CNN baselines
for building damage classification and analyse the trade-offs.

The main outcome would be a comprehensive comparison of modern and traditional architectures for
building damage assessment and insights into how new architecture perform in the domain. Emergency
Response Teams would benefit from a rapid and accurate building damage assessment enables better
resource allocation during disaster response. They will be equipped with tools more effective in
resource-constrained environments. Disaster management agencies would obtain an operational system
for future disaster response. Finally, this work would contribute toward the research community
whereby modern architectures are applied in remote sensing and disaster response.

CRITICAL CONTEXT

Building damage assessment

Most works treat this task as a per-pixel semantic segmentation task and rely on CNN-based backbones.
They are effective, but do not explore modern transformer-based architectures or instance-level
approaches. Gupta et al. (2019) introduced the xBD dataset for assessing building damage from Satellite
imagery, containing pre- and post-disaster images. It is a large scale benchmark, including over 850,000
annotated building polygons labelled with a four-level ordinal damage scale across different disasters
and diverse regions. Importantly for this project, the xBD dataset also provides a baseline two-stage
pipeline using ResNet-based U-Net for building segmentation followed by a ResNet50 classifier for
damage assessment, highlighting early reliance on CNNs. However, the annotations of the dataset
contain valuable information making it ideal for evaluating modern architectures such as Vision
Transformers in an instance-level classification setting, where polygons annotations are directly
leveraged.
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Shen et al. (2022) proposed BDANet; a two-stage CNN-based framework for building damage
assessment from the xBD dataset. Stage 1 consists of U-Net for building segmentation and Stage 2
apples a dual-branch architecture for damage classification with cross-directional attention and
multiscale feature fusion. Although BDANet shows strong performance on the xBD dataset, it
reinforces the dominance of segmentation-based pipelines that rely on dense pixel-level prediction. In
contrast, we would focus on instance-level classification using building polygons, offering a simpler
and operationally efficient alternative which would be valuable in real-world applications where
building footprints are already available.

Similarly, Chen (2020) proposes a two-stage pipeline with U-Net for segmentation followed with
classification applied to cropped building patches. The classification step leverages features from both
the segmentation encoder and a ResNet18 model. The author evaluated different loss functions and
through ablation, he found that Dice and Focal loss were the most efficient. While the method achieves
strong performance (F1 = 0.63), it relies on CNNs and does not explore the potential of transformer-
based models in an instance-level classification.

We observe a shift in the methods used in building damage assessment from a two-stage pipeline of
building localisation and damage classification to unified semantic segmentation models that predict
building presence and damage simultaneously. This shift has overlooked the simplicity and
explainability of instance-level classification, especially in contexts where building footprints are
available.

Weber and Kan (2020) explored a multi-temporal (using both pre and post images) damage assessment
system. They experimented with Instance Segmentation and Semantic Segmentation and identified that
the latter is a “more natural damage-assessment formulation without the notion of instances” as
buildings are too small for instance segmentation. As most of the studies conducted, they also used a
cross-entropy loss function. Their approach fuses feature before the final segmentation layer to jointly
predict pixel-wise damage levels, demonstrating strong performance on the xBD dataset. However, the
method remains segmentation-based and does not exploit instance-level modelling or transformer
architectures. The authors also suggest the use of ordinal cross-entropy loss function which would
penalise predictions heavily when the predicted damage level is further from the true class.

Neto and Dantas (2024) also implemented a one-stage CNN-based pipeline. They performed building
damage assessment using segmentation architecture. Their study explores approaches for handling pre-
and post-disaster satellite images, including stacked inputs, Siamese networks. The best performance
was achieved using a U-Net model with a BDANet backbone. They further refined the results by
applying mathematical morphology operations (dilation, erosion and combinations of both) as post-
processing filters to reduce noise and fill gaps. Most of these studies utilised CNN-based architectures
with mainly Focal and Cross-Entropy loss functions and Dice Loss for segmentation. In this project, we
explore the viability of transformer-based architectures against different CNN in instance-level
classification and implementation of different loss functions.

Classification at instance level has been explored in other research Kaur et al. (2022) proposed a CNN-
based binary classifier to detect damaged vs. undamaged buildings from post-disaster satellite imagery
of Hurricane Harvey. Their model achieved 95% accuracy on cropped building images, demonstrating
the feasibility of instance-level classification pipelines. However, the approach is limited to binary
classification and relies on a shallow CNN. This project extends this direction by exploring transformer-
based architectures and ordinal damage classification.

60



Vision Transformers (ViT)

Dosovitskiy et al. (2021) introduced Vision Transformers (ViT), bringing major development in
computer vision by directly applying transformer architectures to image analysis with great success. By
dividing images into fixed patch sizes and processing them with self-attention mechanisms, ViT is
capable of global receptive fields earlier in the network compared to CNNSs.

Despite ViTs lack of inherent inductive biases like translation equivariance, Dosovitskiy et al.
demonstrated that "large scale training trumps inductive bias". ViT models can outperform CNNs when
pretrained on sufficient data while using less computational resources. This efficiency could prove
beneficial for complex satellite imagery analysis.

The attention mechanism in ViTs enables identification of image regions “semantically relevant” for
classification, suggesting natural aptitude for identifying damage patterns in buildings. Furthermore,
ViT shows excellent transfer learning capabilities when pretrained on sufficient data and transferred to
task with fewer datapoints; which is vital for specialised domain with limited annotated data.

These advantages set ViT as a promising architecture for building damage assessment, where integrating
global context and efficiently processing high-resolution imagery are essential for accurate
classification across damage categories. This project aims to evaluate ViT's effectiveness for this critical
application compared to established CNN approaches.

Vision Transformers in Satellite Imagery Analysis

CNN remains the cornerstone for satellite imagery analysis. However, transformer-based architectures
have demonstrated higher performance recently in tasks like land cover classification by Voelsen et al.
(2024) and crop segmentation by Gallo et al. (2024).

Vision Transformers (ViT) in Building damage assessment

There have been several works done where transformers have been used for building damage
assessment. For instance, Chen et al. (2022) introduced DamFormer, a transformer-based framework.
It employs a siamese transformer encoder built on SegFormer's architecture to learn global features. In
contrast, CNN struggles with global features and would require attention mechanisms or dilated
convolution which are costly. The model performs dual tasks: building localisation and damage
classification within a unified end-to-end architecture. Their experiments on the xBD dataset
demonstrate that transformer-based models outperform CNN approaches across all damage levels.

Another state-of-the-art building damage assessment framework is DAHiTra, a hierarchical transformer
architecture, introduced by Kaur et al. (2024). The model's key innovation is its difference block
mechanism, which explicitly captures temporal changes between pre- and post-disaster imagery at
multiple scales. DAHiTrA achieves superior performance on both the xBD dataset and the Ida-BD
dataset, demonstrating the effectiveness of transformer-based approaches.

While these transformer-based models represent significant advances in end-to-end semantic
segmentation for damage assessment, they exemplify a trend toward increasingly complex architectures
that simultaneously perform building localisation and damage classification. Our research takes a
different approach by focusing specifically on instance-level damage classification using Vision
Transformers. By utilizing pre-defined building polygons from the xBD dataset, we aim to evaluate the
performance of ViT variants against traditional CNN architectures, while simultaneously exploring
various loss functions to address the class imbalances. This approach would offer greater interpretability
of model decisions, reduced computational requirements during inference, and direct applicability in
real-world scenarios where building footprints are already available from GIS databases.
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APPROACHES
- Dataset

We will use the xView2: Assess Building Damage (xBD) dataset, a large-scale benchmark dataset,
consisting of high-resolution satellite imagery [ ]. These images are form 19 diverse natural disaster
events, including hurricanes, floods, earthquakes, volcanic eruptions, wildfires and tsunamis, across six
continents. The dataset contains 22,068 images and more than 800,000 building polygons, making it
the most comprehensive public dataset for building damage assessment. The dataset is formally
structured with pre-defined splits (training, holdout and testing). This structured split ensures robust
evaluation by testing models on unseen disaster events, which is crucial for assessing generalization
capabilities.

The dataset provides paired imagery for each location (pre- and post-disaster) where each image is
accompanied by detailed annotations including:

1. Building polygons represented in WKT (Well-Known Text) format, consisting of vertex
coordinate pairs outlining individual buildings
2. Dual coordinate systems: geographic (lat-lon) and pixel (x, y) to facilitate both geospatial
analysis and computer vision tasks
3. Unique identifiers (UIDs) assigned to each building to enable tracking across pre- and post-
disaster imagery
4. Damage classification labels according to the Joint Damage Scale in post-disaster images:
No Damage (0): Building appears intact
Minor Damage (1): Visible damage to the roof or sides, but structure remains standing
Major Damage (2): Significant structural damage but partial roof/walls remaining
Destroyed (3): Complete collapse or only foundation remains

The dataset exhibits significant class imbalance, with most of buildings labelled as undamaged, while
destroyed buildings constitute only about 10% of the samples. This imbalance presents a key challenge
that our research will address through specialized loss functions such as class weighted focal loss.
Additionally, diverse disaster types and geographical regions introduce variations in building styles,
sizes, and contextual features that test the generalization capabilities of damage assessment models.

For the instance-based classification approach, we will extract individual building patches using the
provided polygon coordinates, maintain the same split organization of the dataset to ensure no data
leakage between training, holdout and test evaluations. Varying building sizes would be addressed
through adaptive cropping strategies.

- Model architectures (the models we are planning to evaluate and compare)
Convolutional Neural Network (CNN)
1. Baseline (ResNet)

We select ResNet as our traditional CNN baseline due to its widespread use in building damage
assessment tasks and proven effectiveness in handling the complexity of satellite imagery in Weber and
Kan (2020) and Chen (2020). The residual blocks address the vanishing gradient problem, allowing for
deeper networks while maintaining computational efficiency.

2. Lightweight CNN (EfficientNet)

EfficientNet is considered as the majority of satellite imagery analysis implemented CNN such as
VGGNet and ResNet. To our best knowledge, lightweight models have not been explored on the xBD
dataset. The lightweight model would also be a good comparison with ViT models, as Dosovitskiy et
al. (2021) mentioned that ViT showed efficient performance results. The model would also be relevant
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in cases where computational resources are limited as it would require significantly less parameters
compared to ResNet.

Vision Transformers (ViT)
1. ViT-B/16 (Vision Transformer Base 16x16)

ViT-B/16 serves as our transformer baseline, representing the foundational ViT architecture. This model
offers global receptive field from the first layer through self-attention mechanisms and can capture long-
range dependencies. Furthermore, ViTs are relatively new in the computer vision field and as such these
architectures have not been explored much in the field of satellite imagery. We may experiment with
other ViT variants such as the ‘big’ and ‘huge’ ViT models.

2. DeiT (Data-Efficient Transformer)

DeiT is being considered in our experimental framework as a more practical approach. While standard
ViTs require massive datasets and computational resources, DeiT achieves competitive performance
through knowledge distillation with less requirements. This makes it particularly relevant for real-world
deployment scenarios where computational constraints exist. The success of DeiT in remote sensing
applications (Bashmal et al., 2021) demonstrates its transferability to satellite imagery tasks, making it
an ideal candidate for evaluating whether the efficiency gains can be maintained while achieving
competitive accuracy in building damage classification.

The models would be implemented through transfer learning and will be modified for four levels of
damage classification. Additional models may be explored such as Swin and MobileNet.

- Methodology
1. CNN implementation

Using PyTorch or Keras framework, we would implement our base CNN model using transfer learning
with ImageNet pre-trained weights. We will apply a fine tuning strategy where we initially freeze all
convolutional layers and only train the classification layer for a specific number of epochs. In the
classification block, the output is replaced to be four damage classes. We will progressively unfreeze
deeper layers, starting from the last convolutional block and use different learning rates for the
classification and convolutional layer. We will compare performance.

We would follow a similar approach for the lightweight CNN model (EfficientNet) and monitor
improvements in performance.

2. ViT implementation

For ViT (ViT-B/16 and DeiT), we will adapt pre-trained models originally trained on ImageNet for our
building damage classification task. The final classification head will be replaced to output four damage
classes while maintaining the core transformer architecture.

We will similarly apply a staged fine-tuning approach where we initially freeze the patch embedding
layers and transformer blocks, training only the classification(MLP) layer. We will progressively
unfreeze transformer blocks starting from the last layer and implementing different learning rate where
deeper transformer blocks receive lower learning rates.

3. Training Configurations

To optimise the models, we may implement learning rate scheduling strategies such step or change on
plateau. To mitigate overfitting, we may use early stopping, gradient clipping and other regularization
techniques (weight decay, dropout). Batch size will vary depending on memory constraints. All
experiments will be conducted with fixed random seeds to ensure reproducibility, and the hardware
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configurations will be provided. We will explore different loss functions. We will initially run our
baseline models with cross-entropy and through ablation, we would find the optimal loss function for
each model. Weber and Kan (2020) observed that class weighted loss functions and ordinal loss
functions could potentially improve the models. We would, therefore, explore class weighted cross-
entropy, focal loss and ordinal loss to address class imbalance.

4. Evaluation

The performance evaluation metrics that we plan to use are overall accuracy and F1-score mainly.
Accuracy is to identify the percentage of correctly classified buildings across all damage categories,
and F1-score is used due to class imbalance. Confusion matrix would provide a detailed breakdown of
predictions and would help identify common misclassification patterns. We would also record training
time for each model for comparison. Statistical analysis will be conducted to evaluate model
performance differences and ensure reliable comparison across architectures. Appropriate statistical
measures will be applied to assess the significance of our results.

Generalizability assessment

To ensure the practical applicability of our findings, we will evaluate the cross-domain generalizability
of our trained models. This will involve testing the CNN and ViT architectures on datasets from different
geographical regions, disaster types, or imaging conditions than those present in the xBD training set.
This cross-domain evaluation will help assess which architecture demonstrates better robustness.

WORK PLAN

Figure 1 provides an estimate of the duration of each task of the project. Data preprocessing must be
completed before model training can begin. CNN baseline and ViT baseline training can proceed in
parallel once preprocessing is finished. Comparative evaluation depends on completion of all model
training phases.
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Tasks description

July

August

September

Project Proposal 01/05/2025 18
Proposal submission 18/05/2025 1
Further Research Works and

X . 19/05/2025 10
Literature Review
Model architectures study 26/05/2025 7
Data acquisition 30/05/2025 1
Data analysis and preparation 02/06/2025 7

Models implementation

CNN Baseline Model (ResNet)

CNN LightWeight Model
(EfficientNet)

ViT Model (+ variants)
LightWeight ViT Model (DeiT)

Loss functions experiments

Additional imrpovements
(Improve generalizability)

Testing and Evaluation
Prepare evaluation script

Evaluate models on test data

Visualise results and error
analysis

Model comparisons (including
previous work)

Tabulate Results + Discussion
draft

Report

Draft (methodology and results)

Finalize literature review and
methodology used

Finalize every section

Editing and proofreading

Submit Final Report

12/06/2025

22/06/2025

02/07/2025

14/07/2025

12/06/2025

24/07/2025

30/07/2025

04/08/2025

14/08/2025

20/08/2025

28/08/2025

02/06/2025

01/09/2025

08/09/2025

22/09/2025

Figure 1: Gantt Chart
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RISKS

In table 1 below, we have identified a set of potential risks for the project, using Dawson’s (2006)
framework. We have outlined the risks and alleviating strategies. The table will be updated as the
project progresses.

Risk Description Likelihood Consequence \ Impact(LxC) Mitigation and Contingency

Tasks take longer 3 6 Conservative  planning and  weekly

than estimated checkpoint using Gantt Chart. Reallocate
hours from optional tasks to prioritize core
experiments, if behind.

Class imbalances 3 12 Implement weighted loss functions, data

affect performance augmentation and  oversampling. If
performance remains low, we will focus on
the results for each class (using recall,
precision)

Insufficient GPU 4 12 Consider Google Colab or Cloud services.

resources Reduce batch sizes. We can also consider
reducing image resolution and switching to
more efficient models.

Poor performance of 4 8 Extensive fine-tuning or identify potential

satellite imagery domain specific pre-trained models and data

domain augmentation techniques. We can also
consider further customisation of the models.

Limited datasets 3 12 Identify potential datasets during the ‘Further

with both building Research Work’, exploring other publicly

masks and damage available datasets (ABCD, DesignSafe). If
labels for we have not been able to find any, we could
generalizability potentially create small manually annotated
assessment validation set from available building masks.

Illness or personal 4 8 Maintain detailed documentation and plan

circumstances buffer time in schedule. Prioritize core tasks
and seek extension in necessary. If prolonged
absence, we would consider reassessing the
scope of the project.

Loss of data 5 5 Establish a cloud back up strategy. If data
loss occurs, we would need to redownload
the dataset and attempt to restore most recent
version of the work.

Table 1: Risks breakdown
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Research Ethics Review Form for MSc Projects

Computer Science Research Ethics Committee (CSREC)

https://www.city.ac.uk/about/governance/committees/cs-research-ethics

Postgraduate students undertaking their final project in the Department of Computer Science must
consider the ethics of their project work and ensure that it complies with research ethics guidelines
and the law for data protection. In some cases, a project will need approval from an ethics committee
before it can proceed. Usually, but not always, this will be because the student is involving other
people (“participants”) in the project.

To ensure that they give appropriate consideration to ethical issues, all students must complete this
form and attach it to their project proposal document. There are two parts:

PART A: Ethics Checklist. All students must complete this part.
The checklist identifies whether the project requires ethical approval and, if so, where to apply for
approval.

PART B: Ethics Proportionate Review Form. Students who have answered “no” to all questions in A1,
A2 and A3 and “yes” to question 4 in A4 in the ethics checklist must complete part B as well. The
project supervisor has delegated authority to provide approval in such cases that are considered to
involve MINIMAL risk. The approval may be provisional — identifying the planned work with human
end user participants as likely to involve MINIMAL RISK. In such cases you must additionally seek full
approval from the supervisor as the project progresses and details are established. Full approval
must be acquired in writing, before recruiting and engaging with human end users participants for
your project.

A.1If you answer YES to any of the questions in this block, you must apply to an
appropriate external ethics committee for approval and log this approval as an

External Application through Research Ethics Online - Delete as

https://researchmanager.city.ac.uk/. This type of research is not covered by City’s appropriat

process, and external approval from an appropriate institution is required. e

1.1  Doesyourresearch require approval from the National Research Ethics Service NO
(NRES)?

https://www.hra.nhs.uk/approvals-amendments/what-approvals-do-i-need/

1.2 will you recruit participants who are covered by the Mental Capacity Act 2005? NO
http://www.scie.org.uk/research/ethics-committee/
1.3 | Willyou recruit any participants who are covered by the Criminal Justice System, NO

for example, people on remand, prisoners and those on probation?
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A.2 If you answer YES to any of the questions in this block, then unless you are
applying to an external ethics committee, you must apply for approval from the

Delete as
Senate Research Ethics Committee (SREC) through Research Ethics Online - .
appropriat
https://researchmanager.city.ac.uk/ e
51 Does your research involve participants who are unable to give informed NO
) consent?
2.2 | Isthere arisk that your research might lead to disclosures from participants NO
concerning their involvement in illegal activities?
2.3 | Isthere arisk that obscene and or illegal material may need to be accessed for NO
your research study (including online content and other material)?
2.4 ' Doesyour project involve participants disclosing information about protected NO
characteristics (as identified by the Equality Act 2010)?
2.5 | Doesyourresearch involve you travelling to another country outside of the UK, NO
where the Foreign & Commonwealth Office has issued a travel warning that
affects the area in which you will study?
http://www.fco.gov.uk/en/
2.6 | Does your research involve invasive or intrusive procedures? NO
2.7 | Doesyour research involve animals? NO
2.8 | Does your research involve the administration of drugs, placebos or other NO
substances to study participants?
A.3 If you answer YES to any of the questions in this block, then unless you are
applying to an external ethics committee or the Senate Research Ethics Committee
(SREC), you must apply for approval from the Computer Science Research Ethics Del
elete as

Committee (CSREC) through Research Ethics Online - )
https://researchmanager.city.ac.uk/. Depending on the level of risk associated with EREE Rl

your application, it may be referred to the Senate Research Ethics Committee. €
3.1 | Doesyourresearch involve participants who are under the age of 18? NO
3.2 | Does your research involve adults who are vulnerable because of their social, NO

psychological or medical circumstances (vulnerable adults)?
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3.3

3.4

3.5

3.5

3.7

Are participants recruited because they are staff or students of City, University of
London?

Does your research involve intentional deception of participants?

Does your research involve participants taking part without their informed
consent?

Is the risk posed to participants greater than that in normal working life?

Is the risk posed to you, the researcher(s), greater than that in normal working
life?
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A.4 If you answer YES to the following question and your answers to all other
questions in sections A1, A2 and A3 are NO, then your project is deemed to be of
MINIMAL RISK.

If this is the case, then you can apply for approval through your supervisor under
PROPORTIONATE REVIEW. You do so by completing PART B of this form.

If you have answered NO to all questions on this form, then your project does not Delete a_s
require ethical approval. You should submit and retain this form as evidence of EREERET
this. ©

4 Does your project involve human participants or their identifiable personal data? NO

71



